A New Model of Binary Elliptic Curves with Fast Arithmetic

نویسندگان

  • Hongfeng Wu
  • Chunming Tang
  • Rongquan Feng
چکیده

This paper presents a new model of ordinary elliptic curves with fast arithmetic over field of characteristic two. In addition, we propose two isomorphism maps between new curves and Weierstrass curves. This paper proposes new explicit addition law for new binary curves and prove the addition law corresponds to the usual addition law on Weierstrass curves. This paper also presents fast unified addition formulae and doubling formulae for these curves. The unified addition formulae cost 12M +2D, where M is the cost of a field multiplication, and D is the cost of multiplying by a curve parameter. These formulae are more efficient than other formulae in literature. Finally, this paper presents explicit formulae for w-coordinates differential addition. In a basic step of Montgomery ladder, the cost of a projective differential addition and doubling are 5M and 1M +1D respectively, and the cost of mixed w-coordinates differential addition is 4M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Algorithms for Arithmetic on Anomalous Binary Curves ?

It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over nite elds. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast ell...

متن کامل

Edwards model of elliptic curves de ned over any nite eld

In this paper, we present an Edwards model for elliptic curves which is de ned over any perfect eld and in particular over nite elds. This Edwards model is birationally equivalent to the well known Edwards model over non-binary elds and is ordinary over binary elds. For this, we use theta functions of level four to obtain an intermediate model that we call a level 4 theta model. This model enab...

متن کامل

Efficient Arithmetic on Koblitz Curves

It has become increasingly common to implement discrete-logarithm based public-key protocols on elliptic curves over finite fields. The basic operation is scalar multiplication: taking a given integer multiple of a given point on the curve. The cost of the protocols depends on that of the elliptic scalar multiplication operation. Koblitz introduced a family of curves which admit especially fast...

متن کامل

Montgomery curves and their arithmetic: The case of large characteristic fields

Three decades ago, Montgomery introduced a new elliptic curve model for use in Lenstra’s ECM factorization algorithm. Since then, his curves and the algorithms associated with them have become foundational in the implementation of elliptic curve cryptosystems. This article surveys the theory and cryptographic applications of Montgomery curves over non-binary finite fields, including Montgomery’...

متن کامل

Fast Algorithm for Converting Ordinary Elliptic Curves into Binary Edward Form

Scalar multiplication is computationally the most expensive operation in elliptic curve cryptosystems. Many techniques in literature have been proposed for speeding up scalar multiplication. In 2008, Bernstein et al proposed binary Edwards curves on which scalar multiplication is faster than traditional curves. At Crypto 2009, Bernstein obtained the fastest implementation for scalar multiplicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010