The Normalized Revised Szeged Index

نویسندگان

  • Mustapha Aouchiche
  • Pierre Hansen
چکیده

In chemical graph theory, many graph parameters, or topological indices, were proposed as estimators of molecular structural properties. Often several variants of an index are considered. The aim is to extend the original concept to larger families of graphs than initially considered, or to make it more precise and discriminant, or yet to make its range of values similar to that of another index, thus facilitating their comparison. In this paper, we introduce a new variant of the Szeged index. It is named normalized revised Szeged index, and is obtained by taking the square root of the revised Szeged index divided by the number of edges in the considered graph. The spread of its values is the same as for the Randić index. We also study the correlations between the Szeged indices, as well as the Randić index, and the boiling point of chemical graphs with up to eight vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

PI, Szeged and Revised Szeged Indices of IPR Fullerenes

In this paper PI, Szeged and revised Szeged indices of an infinite family of IPR fullerenes with exactly 60+12n carbon atoms are computed. A GAP program is also presented that is useful for our calculations.

متن کامل

A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

متن کامل

Revised Szeged Index of Product Graphs

The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...

متن کامل

The quotients between the (revised) Szeged index and Wiener index of graphs

Let Sz(G), Sz(G) and W (G) be the Szeged index, revised Szeged index and Wiener index of a graph G. In this paper, the graphs with the fourth, fifth, sixth and seventh largest Wiener indices among all unicyclic graphs of order n > 10 are characterized; and the graphs with the first, second, third, and fourth largest Wiener indices among all bicyclic graphs are identified. Based on these results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012