Differential Cryptanalysis of the BSPN Block Cipher Structure

نویسنده

  • Liam Keliher
چکیده

BSPN (byte-oriented SPN ) is a general block cipher struc­ ture presented at SAC’96 by Youssef et al. It was designed as a more ef­ ficient version of the bit-oriented SPN structure published earlier in 1996 by Heys and Tavares in the Journal of Cryptology. BSPN is a flexible SPN structure in which only the linear transformation layer is exactly specified, while s-boxes, key-scheduling details, and number of rounds are intentionally left unspecified. Because BSPN can be implemented very efficiently in hardware, several researchers have recommended the 64-bit version as a lightweight cipher for use in wireless sensor networks (WSNs). Youssef et al. perform preliminary analysis on BSPN (using typical block sizes and numbers of rounds) and claim it is resistant to differential and linear cryptanalysis. However, in this paper we show that even if BSPN (similarly parameterized) is instantiated with strong AESlike s-boxes, there exist high probability differentials that allow BSPN to be broken using differential cryptanalysis. In particular, up to 9 rounds of BSPN with a 64-bit block size can be attacked, and up to 18 rounds with a 128-bit block size can be attacked.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)

Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...

متن کامل

Impossible Differential Cryptanalysis on Deoxys-BC-256

Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...

متن کامل

Novel Impossible Differential Cryptanalysis of Zorro Block Cipher

Impossible difference attack is a powerful tool for evaluating the security of block ciphers based on finding a differential characteristic with the probability of exactly zero. The linear layer diffusion rate of a cipher plays a fundamental role in the security of the algorithm against the impossible difference attack. In this paper, we show an efficient method, which is independent of the qua...

متن کامل

Unified Impossible Differential Cryptanalysis on Block Cipher Structures

In this paper, we propose a systematic search method for finding the impossible differential characteristic for block cipher structures, better than the U-method introduced by Kim et al [6]. This method is referred as unified impossible differential (UID) cryptanalysis. We give practical UID cryptanalysis on some popular block ciphers and give the detailed impossible differential characteristic...

متن کامل

Impossible Differential Cryptanalysis for Block Cipher Structures

Impossible Differential Cryptanalysis(IDC) [4] uses impossible differential characteristics to retrieve a subkey material for the first or the last several rounds of block ciphers. Thus, the security of a block cipher against IDC can be evaluated by impossible differential characteristics. In this paper, we study impossible differential characteristics of block cipher structures whose round fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015