Least - Squares Approximation of Structured
نویسندگان
چکیده
State covariances of linear systems satisfy certain constraints imposed by the underlying dynamics. These constraints dictate a particular structure of state covariances. However, sample covariances almost always fail to have the required structure. The renewed interest in using state covariances for estimating the power spectra of inputs gives rise to the approximation problem. In this note, the structured covariance least-squares problem is formulated and the Lyapunov-type matricial linear constraint is converted into an equivalent set of trace constraints. Efficient unconstrained maximization methods capable of solving the corresponding dual problem are developed.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملHigh-performance numerical algorithms and software for structured total least squares
We present a software package for structured total least-squares approximation problems. The allowed structures in the data matrix are block-Toeplitz, block-Hankel, unstructured, and exact. Combination of blocks with these structures can be specified. The computational complexity of the algorithms is O(m), where m is the sample size. We show simulation examples with different approximation prob...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملOn the equivalence of constrained total least squares and structured total least squares
Several extensions of the total least squares (TIS) method that are able to calculate a structured rank deficient approximation of a data matrix have been developed recently. The main result of this correspondence is the demonstration of the equivalence of two of these approaches, namely, the constrained total least squares (CTLS) approach and the structured total least squares (STLS) approach....
متن کامل