Computer modeling of laser melting and spallation of metal targets

نویسندگان

  • Leonid V. Zhigilei
  • Dmitriy S. Ivanov
  • Elodie Leveugle
  • Babak Sadigh
  • Eduardo M. Bringa
چکیده

The mechanisms of melting and photomechanical damage/spallation occurring under extreme superheating/deformation rate conditions realized in short pulse laser processing are investigated in a computational study performed with a hybrid atomistic-continuum model. The model combines classical molecular dynamics method for simulation of nonequilibrium processes of lattice superheating and fast phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons. The kinetics and microscopic mechanisms of melting are investigated in simulations of laser interaction with free-standing Ni films and bulk targets. A significant reduction of the overheating required for the initiation of homogeneous melting is observed and attributed to the relaxation of laser-induced stresses, which leads to the uniaxial expansion and associated anisotropic lattice distortions. The evolution of photomechanical damage is investigated in a large-scale simulation of laser spallation of a 100 nm Ni film. The evolution of photomechanical damage is observed to take place in two stages, the initial stage of void nucleation and growth, when both the number of voids and the range of void sizes are increasing, followed by the void coarsening, coalescence and percolation, when large voids grow at the expense of the decreasing population of small voids. In both regimes the size distributions of voids are found to be well described by the power law with an exponent gradually increasing with time. A good agreement of the results obtained for the evolution of photomechanical damage in a metal film with earlier results reported for laser spallation of molecular systems and shock-induced back spallation in metals suggests that the observed processes of void nucleation, growth and coalescence may reflect general characteristics of the dynamic fracture at high deformation rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Study of Short-pulse Laser Melting, Recrystallization, Spallation, and Ablation of Metal Targets

A hybrid computational model combining classical molecular dynamics method for simulation of fast nonequilibrium phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons is developed. The model is applied for a systematic computational investigation of the mechanisms of short pulse laser interaction with bulk metal tar...

متن کامل

Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion†

The mechanisms of short pulse laser interactions with a metal target are investigated in simulations performed with a model combining the molecular dynamics method with a continuum description of laser excitation, electron-phonon equilibration, and electron heat conduction. Three regimes of material response to laser irradiation are identified in simulations performed with a 1 ps laser pulse, w...

متن کامل

Photomechanical spallation of molecular and metal targets: molecular dynamics study

Microscopic mechanisms of photomechanical spallation are investigated in a series of large-scale molecular dynamics simulations performed for molecular and metal targets. A mesoscopic breathing sphere model is used in simulations of laser interaction with molecular targets. A coupled atomisticcontinuum model that combines a molecular dynamics method with a continuum description of the laser exc...

متن کامل

Numerical Simulation Of Heat Affected Zone Microstructure During Laser Surface Melting

Microstructural changes during laser welding and laser surface treatment has been regarded by many researchers. Most researches have focused on studying the effect of various process parameters on the size and microstructure of the heat affected zone. But some studies show that the initial microstructure of the base metal can also affect the heat affected zone dimensions and final microstructur...

متن کامل

The effect of surface roughness on 1050 aluminum alloy weld profile welded by pulsed Nd:YAG laser

Surface roughness in the welding processes is one of the important parameters in the laser welded metal connections which affects laser beam absorption directly. When the laser beam is irradiated to the surface of the base metal, the surface roughness plays an important role in the amount of beam absorption and the amount of melting achieved and directly affects the penetration depth. The main ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004