A Conserved Regulatory Logic Controls Temporal Identity in Mouse Neural Progenitors
نویسندگان
چکیده
Neural progenitors alter their output over time to generate different types of neurons and glia in specific chronological sequences, but this process remains poorly understood in vertebrates. Here we show that Casz1, the vertebrate ortholog of the Drosophila temporal identity factor castor, controls the production of mid-/late-born neurons in the murine retina. Casz1 is expressed from mid/late stages in retinal progenitor cells (RPCs), and conditional deletion of Casz1 increases production of early-born retinal neurons at the expense of later-born fates, whereas precocious misexpression of Casz1 has the opposite effect. In both cases, cell proliferation is unaffected, indicating that Casz1 does not control the timing of cell birth but instead biases RPC output directly. Just as Drosophila castor lies downstream of the early temporal identity factor hunchback, we find that the hunchback ortholog Ikzf1 represses Casz1. These results uncover a conserved strategy regulating temporal identity transitions from flies to mammals.
منابع مشابه
Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics
During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN) progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional chang...
متن کاملCommon Temporal Identity Factors Regulate Neuronal Diversity in Fly Ventral Nerve Cord and Mouse Retina
Temporal sequences of transcription factors (tTFs) in Drosophila neural progenitors generate neuronal diversity. Mattar et al. (2015) identify Casz1/Castor as a late temporal identity factor in mouse retinal progenitors that is regulated by the early factor Ikzf1/Hunchback, thus generalizing the notion of tTFs.
متن کاملMechanisms of temporal identity regulation in mouse retinal progenitor cells
While much progress has been made in recent years toward elucidating the transcription factor codes controlling how neural progenitor cells generate the various glial and neuronal cell types in a particular spatial domain, much less is known about how these progenitors alter their output over time. In the past years, work in the developing mouse retina has provided evidence that a transcription...
متن کاملPlaying Well with Others: Extrinsic Cues Regulate Neural Progenitor Temporal Identity to Generate Neuronal Diversity.
During neurogenesis, vertebrate and Drosophila progenitors change over time as they generate a diverse population of neurons and glia. Vertebrate neural progenitors have long been known to use both progenitor-intrinsic and progenitor-extrinsic cues to regulate temporal patterning. In contrast, virtually all temporal patterning mechanisms discovered in Drosophila neural progenitors (neuroblasts)...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 85 شماره
صفحات -
تاریخ انتشار 2015