Random mutagenesis of the pomA gene encoding a putative channel component of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus.

نویسندگان

  • S Kojima
  • M Kuroda
  • I Kawagishi
  • M Homma
چکیده

PomA and PomB are integral membrane proteins and are essential for the rotation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. On the basis of their similarity to MotA and MotB, which are the proton-conducting components of the H(+)-driven motor, they are thought to form the Na(+)-channel complex and to be essential for mechanochemical coupling in the motor. To investigate PomA function, random mutagenesis of the pomA gene by using hydroxylamine was carried out. We isolated 37 non-motile mutants (26 independent mutations) and most of the mutations were dominant; these mutant alleles are able to inhibit the motility of wild-type cells when greatly overexpressed. The mutant PomA proteins could be detected by immunoblotting, except for those with deletions or truncations. Many of the dominant mutations were mapped to the putative third or fourth transmembrane segments, which are the most conserved regions. Some mutations that showed strong dominance were in highly conserved residues. T1861 is the mutation of a polar residue located in a transmembrane segment that might be involved in ion translocation. P199L occurred in a residue that is thought to mediate conformational changes essential for torque generation in MotA. These results suggest that PomA and MotA have very similar structures and roles, and the basic mechanism for torque generation will be similar in the proton and sodium motors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.

The polar flagellum of Vibrio alginolyticus rotates remarkably fast (up to 1,700 revolutions per second) by using a motor driven by sodium ions. Two genes, motX and motY, for the sodium-driven flagellar motor have been identified in marine bacteria, Vibrio parahaemolyticus and V. alginolyticus. They have no similarity to the genes for proton-driven motors, motA and motB, whose products constitu...

متن کامل

Multimeric structure of PomA, a component of the Na+-driven polar flagellar motor of vibrio alginolyticus.

Four integral membrane proteins, PomA, PomB, MotX, and MotY, are thought to be directly involved in torque generation of the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. Our previous study showed that PomA and PomB form a complex, which catalyzes sodium influx in response to a potassium diffusion potential. PomA forms a stable dimer when expressed in a PomB null mutant. To explor...

متن کامل

Cell-free synthesis of the torque-generating membrane proteins, PomA and PomB, of the Na+-driven flagellar motor in Vibrio alginolyticus.

Flagellar motor proteins, PomA and PomB, are essential for converting the sodium motive force into rotational energy in the Na(+)-driven flagella motor of Vibrio alginolyticus. PomA and PomB, which are cytoplasmic membrane proteins, together comprise the stator complex of the motor and form a Na(+) channel. We tried to synthesize PomA and PomB by using the cell-free protein synthesis system, PU...

متن کامل

Functional interaction between PomA and PomB, the Na(+)-driven flagellar motor components of Vibrio alginolyticus.

Four proteins, PomA, PomB, MotX, and MotY, appear to be involved in force generation of the sodium-driven polar flagella of Vibrio alginolyticus. Among these, PomA and PomB seem to be associated and to form a sodium channel. By using antipeptide antibodies against PomA or PomB, we carried out immunoprecipitation to verify whether these proteins form a complex and examined the in vivo stabilitie...

متن کامل

Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus.

In torque generation by the bacterial flagellar motor, it has been suggested that electrostatic interactions between charged residues of MotA and FliG at the rotor-stator interface are important. However, the actual role(s) of those charged residues has not yet been clarified. In this study, we systematically made mutants of Vibrio alginolyticus whose charged residues of PomA (MotA homologue) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 145 ( Pt 7)  شماره 

صفحات  -

تاریخ انتشار 1999