Robust mixture modelling using the t distribution
نویسندگان
چکیده
Normal mixture models are being increasingly used to model the distributions of a wide variety of random phenomena and to cluster sets of continuous multivariate data. However, for a set of data containing a group or groups of observations with longer than normal tails or atypical observations, the use of normal components may unduly affect the fit of the mixture model. In this paper, we consider a more robust approach by modelling the data by a mixture of t distributions. The use of the ECM algorithm to fit this t mixture model is described and examples of its use are given in the context of clustering multivariate data in the presence of atypical observations in the form of background noise.
منابع مشابه
Robust Bayesian clustering
A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to ...
متن کاملRobust mixture modeling using t-distribution: application to speaker ID
Robust stochastic modeling of speech is an important issue for the performance of practical applications. The Gaussian mixture model, GMM, is widely used in speaker ID, but its performance would get limited in the presence of unseen noise and distortions. Such noisy data, referred to as ”outliers” for the original distribution, can be better represented by the use of heavy-tail distributions, s...
متن کاملEvaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملRobust Bayesian Mixture Modelling
Bayesian approaches to density estimation and clustering using mixture distributions allow the automatic determination of the number of components in the mixture. Previous treatments have focussed on mixtures having Gaussian components, but these are well known to be sensitive to outliers, which can lead to excessive sensitivity to small numbers of data points and consequent over-estimates of t...
متن کاملRobust Mixture Regression Models Using T - Distribution
In this report, we propose a robust mixture of regression based on t-distribution by extending the mixture of t-distributions proposed by Peel and McLachlan (2000) to the regression setting. This new mixture of regression model is robust to outliers in y direction but not robust to the outliers with high leverage points. In order to combat this, we also propose a modified version of the propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 10 شماره
صفحات -
تاریخ انتشار 2000