Strong CA2 Pyramidal Neuron Synapses Define a Powerful Disynaptic Cortico-Hippocampal Loop
نویسندگان
چکیده
Neurons propagate information through circuits by integrating thousands of synaptic inputs to generate an action potential output. Inputs from different origins are often targeted to distinct regions of a neuron's dendritic tree, with synapses on more distal dendrites normally having a weaker influence on cellular output compared to synapses on more proximal dendrites. Here, we report that hippocampal CA2 pyramidal neurons, whose function has remained obscure for 75 years, have a reversed synaptic strength rule. Thus, CA2 neurons are strongly excited by their distal dendritic inputs from entorhinal cortex but only weakly activated by their more proximal dendritic inputs from hippocampal CA3 neurons. CA2 neurons in turn make strong excitatory synaptic contacts with CA1 neurons. In this manner, CA2 neurons form the nexus of a highly plastic disynaptic circuit linking the cortical input to the hippocampus to its CA1 neuronal output. This circuit is likely to mediate key aspects of hippocampal-dependent spatial memory.
منابع مشابه
A Cortico-Hippocampal Learning Rule Shapes Inhibitory Microcircuit Activity to Enhance Hippocampal Information Flow
How does coordinated activity between distinct brain regions implement a set of learning rules to sculpt information processing in a given neural circuit? Using interneuron cell-type-specific optical activation and pharmacogenetic silencing in vitro, we show that temporally precise pairing of direct entorhinal perforant path (PP) and hippocampal Schaffer collateral (SC) inputs to CA1 pyramidal ...
متن کاملDepolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses.
Hippocampal CA3 pyramidal neurons receive two types of excitatory afferent innervation: mossy fibers (MFs) from granule cells of the dentate gyrus and recurrent collateral fibers (CFs) from other CA3 pyramidal neurons. At CF-CA3 pyramidal neuron synapses, membrane depolarization paired with low (0.33 Hz) presynaptic stimulation generated a heterogeneous response that ranged from long-term poten...
متن کاملDisynaptic pyramidal excitation in forelimb motoneurons mediated via C(3)-C(4) propriospinal neurons in the Macaca fuscata.
In contrast to findings in the cat, it recently has been shown that disynaptic pyramidal EPSPs only rarely are observed in forelimb motoneurons of the macaque monkey in the intact spinal cord or after a corticospinal transection in C(5). This finding has been taken to indicate that the disynaptic pyramidal excitatory pathway via C(3)-C(4) propriospinal neurons (PNs) is weakened through phylogen...
متن کاملDendritic Inhibitory Synapses Punch above Their Weight
Müllner et al. (2015) show that single inhibitory synapses placed in the right location on the dendritic tree can exert a powerful impact on backpropagating action potentials in hippocampal pyramidal neurons by controlling local Ca(2+) influx with μm and ms precision.
متن کاملThe role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.
Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 66 شماره
صفحات -
تاریخ انتشار 2010