Average performance of the sparsest approximation using a general dictionary

نویسندگان

  • François Malgouyres
  • Mila Nikolova
چکیده

l00 26 07 07 , v er si on 1 4 M ar 2 00 8 Average performance of the sparsest approximation using a general dictionary François Malgouyres and Mila Nikolova ⋆ LAGA/L2TI, Université Paris 13, CNRS, 99 avenue J.B. Clément, 93430 Villetaneuse, France; (33/0) 1-49-40-35-83, [email protected] ⋄ CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. President Wilson, F-94230 Cachan, France (33/0) 1 47 50 59 08 [email protected] March 4, 2008

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average performance of the sparsest approximation in a dictionary

Given data d ∈ R , we consider its representation u involving the least number of non-zero elements (denoted by l0(u∗)) using a dictionary A (represented by a matrix) under the constraint ‖Au− d‖ ≤ τ , for τ > 0 and a norm ‖.‖. This (nonconvex) optimization problem leads to the sparsest approximation of d. We assume that data d are uniformly distributed in θBfd (1) where θ>0 and Bfd (1) is the ...

متن کامل

Maximal Sparsity Representation via l1 Minimization

Finding a sparse representation of signals is desired in many applications. For a representation dictionary D and a given signal S ∈ span{D}, we are interested in finding the sparsest vector γ such that Dγ = S. Previous results have shown that if D is composed of a pair of unitary matrices, then under some restrictions dictated by the nature of the matrices involved, one can find the sparsest r...

متن کامل

Speaker Recognition via Block Sparse Bayesian Learning

In order to demonstrate the effectiveness of sparse representation techniques for speaker recognition, a dictionary of feature vectors belonging to all speakers is constructed by total variability i-vectors. Each feature vector from unknown utterance is expressed as linear weighted sum of a dictionary. The weights are calculated using Block Sparse Bayesian Learning (BSBL) where the sparsest sol...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Highly sparse representations from dictionaries are unique and independent of the sparseness measure by

The purpose of this paper is to study sparse representations of signals from a general dictionary in a Banach space. For so-called localized frames in Hilbert spaces, the canonical frame coefficients are shown to provide a near sparsest expansion for several sparseness measures. However, for frames which are not localized, this no longer holds true and sparse representations may depend strongly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008