GlgS, described previously as a glycogen synthesis control protein, negatively regulates motility and biofilm formation in Escherichia coli.
نویسندگان
چکیده
Escherichia coli glycogen metabolism involves the regulation of glgBXCAP operon expression and allosteric control of the GlgC [ADPG (ADP-glucose) pyrophosphorylase]-mediated catalysis of ATP and G1P (glucose-1-phosphate) to ADPG linked to glycogen biosynthesis. E. coli glycogen metabolism is also affected by glgS. Though the precise function of the protein it encodes is unknown, its deficiency causes both reduced glycogen content and enhanced levels of the GlgC-negative allosteric regulator AMP. The transcriptomic analyses carried out in the present study revealed that, compared with their isogenic BW25113 wild-type strain, glgS-null (ΔglgS) mutants have increased expression of the operons involved in the synthesis of type 1 fimbriae adhesins, flagella and nucleotides. In agreement, ΔglgS cells were hyperflagellated and hyperfimbriated, and displayed elevated swarming motility; these phenotypes all reverted to the wild-type by ectopic glgS expression. Also, ΔglgS cells accumulated high colanic acid content and displayed increased ability to form biofilms on polystyrene surfaces. F-driven conjugation based on large-scale interaction studies of glgS with all the non-essential genes of E. coli showed that deletion of purine biosynthesis genes complement the glycogen-deficient, high motility and high biofilm content phenotypes of ΔglgS cells. Overall the results of the present study indicate that glycogen deficiency in ΔglgS cells can be ascribed to high flagellar propulsion and high exopolysaccharide and purine nucleotides biosynthetic activities competing with GlgC for the same ATP and G1P pools. Supporting this proposal, glycogen-less ΔglgC cells displayed an elevated swarming motility, and accumulated high levels of colanic acid and biofilm. Furthermore, glgC overexpression reverted the glycogen-deficient, high swarming motility, high colanic acid and high biofilm content phenotypes of ΔglgS cells to the wild-type. As on the basis of the present study GlgS has emerged as a major determinant of E. coli surface composition and because its effect on glycogen metabolism appears to be only indirect, we propose to rename it as ScoR (surface composition regulator).
منابع مشابه
Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis
Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...
متن کاملAutoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022).
The cross-species bacterial communication signal autoinducer 2 (AI-2), produced by the purified enzymes Pfs (nucleosidase) and LuxS (terminal synthase) from S-adenosylhomocysteine, directly increased Escherichia coli biofilm mass 30-fold. Continuous-flow cells coupled with confocal microscopy corroborated these results by showing the addition of AI-2 significantly increased both biofilm mass an...
متن کاملCoordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product.
The carbon storage regulator gene, csrA, encodes a factor which negatively modulates the expression of the glycogen biosynthetic gene glgC by enhancing the decay of its mRNA (M. Y. Liu, H. Yang, and T. Romeo, J. Bacteriol. 177:2663-2672, 1995). When endogenous glycogen levels in isogenic csrA+ and csrA::kanR strains were quantified during the growth curve, both the rate of glycogen accumulation...
متن کاملBiofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli.
The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of...
متن کاملCharacterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation.
Vibrio cholerae encodes a small RNA with homology to Escherichia coli RyhB. Like E. coli ryhB, V. cholerae ryhB is negatively regulated by iron and Fur and is required for repression of genes encoding the superoxide dismutase SodB and multiple tricarboxylic acid cycle enzymes. However, V. cholerae RyhB is considerably longer (>200 nucleotides) than the E. coli RNA (90 nucleotides), and it regul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 452 3 شماره
صفحات -
تاریخ انتشار 2013