Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels
نویسندگان
چکیده
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.
منابع مشابه
Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices
Microfluidic devices and biochips offer miniaturized laboratories for the separation, reaction, and analysis of biochemical materials with high sensitivity and low reagent consumption. The integration of functional or biomimetic elements further functionalizes microfluidic devices for more complex biological studies. The recently proposed ship-in-a-bottle integration based on laser direct writi...
متن کاملDirect laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics
Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D,...
متن کاملFemtosecond laser machining of multi-depth microchannel networks onto silicon
Direct writing of multi-depth microchannel branching networks into a silicon wafer with femtosecond pulses at 200 kHz is reported. The silicon wafer with the microchannels is used as the mold for rapid prototyping of microchannels on polydimethylsiloxane. The branching network is designed to serve as a gas exchanger for use in artificial lungs and bifurcates according to Murray’s law. In the de...
متن کاملControllable assembly of silver nanoparticles induced by femtosecond laser direct writing
We report controllable assembly of silver nanoparticles (Ag NPs) for patterning of silver microstructures. The assembly is induced by femtosecond laser direct writing (FsLDW). A tightly focused femtosecond laser beam is capable of trapping and driving Ag NPs to form desired micropatterns with a high resolution of ∼190 nm. Taking advantage of the 'direct writing' feature, three microelectrodes h...
متن کاملHigh efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication
High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given 'Y' shape microchannel. The key novelty of our approach lies on rapidly integrating ...
متن کامل