Some results on the lexicographic product of vertex-transitive graphs
نویسندگان
چکیده
Many large graphs can be constructed from existing smaller graphs by using graph operations, for example, the Cartesian product and the lexicographic product. Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this short note, we give some properties of the lexicographic products of vertextransitive and of edge-transitive graphs. In particular, we show that the lexicographic product of Cayley graphs is a Cayley graph. © 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
On the Zagreb and Eccentricity Coindices of Graph Products
The second Zagreb coindex is a well-known graph invariant defined as the total degree product of all non-adjacent vertex pairs in a graph. The second Zagreb eccentricity coindex is defined analogously to the second Zagreb coindex by replacing the vertex degrees with the vertex eccentricities. In this paper, we present exact expressions or sharp lower bounds for the second Zagreb eccentricity co...
متن کاملSelf-Complementary Vertex-Transitive Graphs
A graph Γ is self-complementary if its complement is isomorphic to the graph itself. An isomorphism that maps Γ to its complement Γ is called a complementing isomorphism. The majority of this dissertation is intended to present my research results on the study of self-complementary vertex-transitive graphs. I will provide an introductory mini-course for the backgrounds, and then discuss four pr...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملFurther Results on Betweenness Centrality of Graphs
Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.
متن کاملGrowth in products of graphs
We present some results on the growth in various products of graphs. In particular we study the Cartesian, strong, lexicographic, tensor and free product of graphs. We show that with respect to distances the tensor product behaves differently from other products. In general the results are valid for rooted graphs but have especially nice structure in the case of vertex-transitive factors.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 24 شماره
صفحات -
تاریخ انتشار 2011