Exploiting inter-image similarity and ensemble of extreme learners for fixation prediction using deep features
نویسندگان
چکیده
This paper presents a novel fixation prediction and saliency modeling framework based on inter-image similarities and ensemble of Extreme Learning Machines (ELM). The proposed framework is inspired by two observations, 1) the contextual information of a scene along with low-level visual cues modulates attention, 2) the influence of scene memorability on eye movement patterns caused by the resemblance of a scene to a former visual experience. Motivated by such observations, we develop a framework that estimates the saliency of a given image using an ensemble of extreme learners, each trained on an image similar to the input image. That is, after retrieving a set of similar images for a given image, a saliency predictor is learnt from each of the images in the retrieved image set using an ELM, resulting in an ensemble. The saliency of the given image is then measured in terms of the mean of predicted saliency value by the ensemble’s members.
منابع مشابه
Development of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملDeep Extreme Feature Extraction: New MVA Method for Searching Particles in High Energy Physics
In this paper, we present Deep Extreme Feature Extraction (DEFE), a new ensemble MVA method for searching ττ channel of Higgs bosons in high energy physics. DEFE can be viewed as a deep ensemble learning scheme that trains a strongly diverse set of neural feature learners without explicitly encouraging diversity and penalizing correlations. This is achieved by adopting an implicit neural contro...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملDeep Metric Learning with BIER: Boosting Independent Embeddings Robustly
Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 244 شماره
صفحات -
تاریخ انتشار 2017