The Effect of Continental Slope on Buoyancy-Driven Circulation

نویسندگان

  • LIXIN WU
  • ZHENGYU LIU
  • HARLEY E. HURLBURT
چکیده

The effect of continental slope on buoyancy-driven circulation has been studied using a two-layer quasigeostrophic model. In the model, buoyancy flux is incorporated as interfacial mass flux, which consists of narrow intense detrainment in the north and broad entrainment in the south. The model explicitly shows that, in the presence of the continental slope, a small amount of buoyancy flux can drive a strong barotropic flow. This flow develops because the beta effect of bottom topography either reduces or deflects the buoyancy-driven deep flow so that it cannot compensate its overlying counterflow, thus generating a net transport. As a result, in a double gyre circulation with a western continental slope, a small amount of detrainment/entrainment water mass can substantially enhance the transport of the western boundary current through southwestern deflection of the deep subpolar circulation. For example, with a reasonable western continental slope, a 10 Sv (Sv [ 106 m3 s21) detrainment mass flux can increase the transport of the western boundary current from 40 Sv of the wind-driven transport to 148 Sv. Relevance to the North Atlantic is then discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic Modelling of Coral Reefs:Ningaloo Reef-Western Australia

As with all coral reef systems, the ecology of Ningaloo Reef is closely linked to water circulation which transport and disperse key material such as nutrients and larvae. Circulation on coral reefs may be driven by a number of forcing mechanisms including waves, tides, wind, and buoyancy effects. Surface waves interacting with reefs have long been known to dominate the currents on many coral r...

متن کامل

Buoyancy driven heat transfer of a nanofluid in a differentially heated square cavity under effect of an adiabatic square baffle

Buoyancy driven heat transfer of Cu-water nanofluid in a differentially heated square cavity with an inner adiabatic square baffle at different positions is studied numerically. The left and right walls of the cavity are at temperatures of Th and Tc, respectively that Th > Tc, while the horizontal walls are insulated. The governing equations are discretized using the finite volume method while ...

متن کامل

Eddy generation and jet formation via dense water outflows across the Antarctic continental slope

Along various stretches of the Antarctic margins, dense Antarctic Bottom Water (AABW) escapes its formation sites and descends the continental slope. This export necessarily raises the isopycnals associated with lighter density classes over the continental slope, resulting in density surfaces that connect the near-freezing waters of the continental shelf to the much warmer CDW at mid-depth offs...

متن کامل

The Evolution of Density-Driven Circulation Over Sloping Bottom Topography

The short timescale temporal ev~lution of buoyancy-driven coastal flow over sloping bottom topography is examined using a two-dimensional, vertically averaged numerical model. Winter shelf circulation driven by a coastal "point source" buoyancy flux is modeled by initiating a coastal outflow with density anomaly t into well-mixed shelf water. The nonlinear interaction between the time-varying v...

متن کامل

Linear and Nonlinear Stratified Spindown over Sloping Topography

In a stratified rotating fluid, frictionally driven circulations couple with the buoyancy field over sloping topography. Analytical and numerical methods are used to quantify the impact of this coupling on the vertical circulation, spindown of geostrophic flows, and the formation of a shelfbreak jet. Over a stratified. slope, linear spindown of a geostrophic along-isobath flow induces cross-iso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999