Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force.

نویسندگان

  • A Antunes
  • P M Glover
  • Y Li
  • O S Mian
  • B L Day
چکیده

Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plenary Lectures PL01 MAGNETIC VESTIBULAR STIMULATION: AN UPDATE

It has been known for decades that Individuals working next to strong static magnetic fields can feel disoriented and vertiginous. Roberts et al. suggested this was due to peripheral vestibular stimulation. Indeed, humans, mice, and zebrafish while inside a strong, static magnetic field, all demonstrate behaviors consistent with peripheral vestibular stimulation. The proposed mechanism for this...

متن کامل

MRI Magnetic Field Stimulates Rotational Sensors of the Brain

Vertigo in and around magnetic resonance imaging (MRI) machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all of our healthy human subjects developed a robust nystagmus while simply lying in the static magnetic field of an MRI machine. Patients lacking la...

متن کامل

Neuro Forum A trail of artificial vestibular stimulation: electricity, heat, and magnet

Shaikh AG. A trail of artificial vestibular stimulation: electricity, heat, and magnet. J Neurophysiol 108: 1–4, 2012. First published March 28, 2012; doi:10.1152/jn.01169.2011.—The interaction between the magnetic field of a magnetic resonance imaging (MRI) machine and ion currents within the inner-ear endolymph results in a Lorentz force. This force produces a pressure that pushes on the cupu...

متن کامل

A trail of artificial vestibular stimulation: electricity, heat, and magnet.

The interaction between the magnetic field of a magnetic resonance imaging (MRI) machine and ion currents within the inner-ear endolymph results in a Lorentz force. This force produces a pressure that pushes on the cupula within the semicircular canals causing nystagmus and vertigo. Here I discuss several implications of this unique and noninvasive way to stimulate the vestibular system in expe...

متن کامل

Influence of Induced Magnetic Field and Partial Slip on the Peristaltic Flow of a Couple Stress Fluid in an Asymmetric Channel

This paper describes the effects of induced magnetic field and partial slip on the peristaltic flow of a couple stress fluids in an asymmetric channel. The two dimensional equation of couple stress fluid are simplified by making the assumptions of long wave length and low Reynolds number. The exact solutions of reduced momentum equation and magnetic force function have been computed in wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 57 14  شماره 

صفحات  -

تاریخ انتشار 2012