Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating

نویسندگان

  • Zhen Li
  • Shun-Wen Chang
  • Chun-Chung Chen
  • Stephen B. Cronin
چکیده

We report substantial improvements and modulation in the photocurrent (PC) and photoluminescence (PL) spectra of monolayer MoS2 taken under electrostatic and ionic liquid gating conditions. The photocurrent and photoluminescence spectra show good agreement with a dominant peak at 1.85eV. The magnitude of the photoluminescence can be increased 300% by ionic liquid gating due to the passivation of surface states and trapped charges that act as recombination centers. The photocurrent also doubles when passivated by the ionic liquid. Interestingly, a significant shift of the PL peak position is observed under electrostatic (14meV) and ionic liquid (30meV) gating, as a result of passivation. The ionic liquid provides significant screening without any externally applied voltage, indicating that these surface recombination centers have net charge. The acute sensitivity of monolayer MoS2 to ionic liquid gating and passivation arises because of its high surface-to-volume ratio, which makes it especially sensitive to trapped charge and surface states. These results reveal that, in order for efficient optoelectronic devices to be made from monolayer MoS2, some passivation strategy must be employed to mitigate the issues associated with surface recombination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave Assisted Synthesis of Polycrystalline Flower-like ZincOxide Nanostructure Using Dicationic Ionic Liquid

In this paper, synthesis of the flower-like zinc oxide was performed using microwave assisted dicationic ionic liquid [mmp(im)2 ]Br2 . The polycrystalline flower-like zinc oxide nanostructure was obtained when a suitable mole ratio (ionic liquid /zinc acetate) and short duration microwave was used. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectra w...

متن کامل

Silicon-nitride photonic circuits interfaced with monolayer MoS2

Articles you may be interested in Near bandgap second-order nonlinear optical characteristics of MoS2 monolayer transferred on transparent substrates Appl. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells Appl. Frequency control of photonic crystal membrane resonators by monolayer deposition Appl.

متن کامل

Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible

Temperature and Fermi energy dependent exciton eigenenergies of monolayer molybdenum disulfide (MoS2) are calculated using an atomistic model. These exciton eigen-energies are used as the resonance frequencies of a hybrid Lorentz-Drude-Gaussian model, in which oscillation strengths and damping coefficients are obtained from the experimental results for the differential transmission and reflecti...

متن کامل

Ionic Liquid Based Dispersive Liquid Liquid Microextraction and Enhanced Determination of the Palladium in Water, Soil and Vegetable Samples by FAAS

In this study, we combined Ionic Liquid-based Dispersive Liquid Liquid Micro Extraction (IL-DLLME) with FAAS for determining the palladium in different real samples at the trace level. 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6] ionic liquid and 1-(2-pyridylazo) 2-naphthol (PAN), were chosen as the extraction solvent and the chelating agent, respectively. The hydr...

متن کامل

Photoluminescence in two-dimensional crystals

Two-dimensional (2D) crystals derived from layered structures exhibit a unique set of properties as elegantly demonstrated for graphene. Semiconducting 2D structures such as MoS2 sheets are attractive building blocks for novel electronic and optoelectronic devices. In this talk, I will report photoluminescence properties of group 6 transition metal dichalcogenide (TMD) 2D crystals and discuss h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014