Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program.

نویسندگان

  • Alexandra Lainé
  • Bruno Martin
  • Marine Luka
  • Lucile Mir
  • Cédric Auffray
  • Bruno Lucas
  • Georges Bismuth
  • Céline Charvet
چکیده

An uncontrolled exaggerated Th17 response can drive the onset of autoimmune and inflammatory diseases. In this study, we show that, in T cells, Foxo1 is a negative regulator of the Th17 program. Using mixed bone marrow chimeras and Foxo1-deficient mice, we demonstrate that this control is effective in vivo, as well as in vitro during differentiation assays of naive T cells with specific inhibitor of Foxo1 or inhibitors of the PI3K/Akt pathway acting upstream of Foxo1. Consistently, expressing this transcription factor in T cells strongly decreases Th17 generation in vitro as well as transcription of both IL-17A and IL-23R RORγt-target genes. Finally, at the molecular level, we demonstrate that Foxo1 forms a complex with RORγt via its DNA binding domain to inhibit RORγt activity. We conclude that Foxo1 is a direct antagonist of the RORγt-Th17 program acting in a T cell-intrinsic manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Foxo1 Is a T Cell–Intrinsic Inhibitor of the RORgt-Th17 Program

An uncontrolled exaggerated Th17 response can drive the onset of autoimmune and inflammatory diseases. In this study, we show that, in T cells, Foxo1 is a negative regulator of the Th17 program. Using mixed bone marrow chimeras and Foxo1-deficient mice, we demonstrate that this control is effective in vivo, as well as in vitro during differentiation assays of naive T cells with specific inhibit...

متن کامل

Inflammatory T helper 17 cells promote depression-like behavior in mice.

BACKGROUND Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact central nervous system functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse...

متن کامل

Pharmacological inhibition of RORγt suppresses the Th17 pathway and alleviates arthritis in vivo

Retinoic acid receptor-related-orphan-receptor-C (RORγt) is the key transcription factor that is driving the differentiation of IL-17 producing T-helper 17 (Th17) cells that are implicated in the pathology of various autoimmune and inflammatory diseases. Based on the importance of RORγt in promoting Th17-driven pathology, there is considerable interest to develop low-molecular-weight compounds ...

متن کامل

Regulation of RORγt in Inflammatory Lymphoid Cell Differentiation.

T-helper 17 (Th17) cells differentiate from naïve CD4(+) T cells in response to signals from commensal microbiota and produce cytokines critical for the integrity of mucosal barriers. These cells also disseminate throughout the body, and are key participants in numerous inflammatory processes. A key challenge is to elucidate the mechanisms that govern Th17 cell beneficial versus pathogenic func...

متن کامل

MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation

Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS.Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 195 4  شماره 

صفحات  -

تاریخ انتشار 2015