9 Computation Electromagnetism and Discrete Exterior Calculus

نویسندگان

  • Yujie Ma
  • Zheng Xie
  • Zheng Ye
چکیده

Computational electromagnetism is concerned with the numerical study of Maxwell equations. By choosing a discrete Gaussian measure on prism lattice, we use discrete exterior calculus and lattice gauge theory to construct discrete Maxwell equations in vacuum case. We implement this scheme on Java development plateform to simulate the behavior of electromagnetic waves. This work is partially supported by NKBRPC (No. 2004CB318000) and NNSFC (No. 10871170) E-mail: [email protected] E-mail: [email protected] E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Exterior Calculus and Computation Electromagnetism

Computational electromagnetism is concerned with the numerical study of Maxwell equations. By choosing a discrete Gaussian measure on prism lattice, we use discrete exterior calculus and lattice gauge theory to construct discrete Maxwell equations in vacuum case. We implement this scheme on Java development plateform to simulate the behavior of electromagnetic waves.

متن کامل

Computational Electromagnetism and Implicit Discrete Exterior Calculus

The implicit Euler scheme of time variable and discrete exterior calculus can be united to find an unconditional stable approach, which is called implicit discrete exterior calculus. This technique for solving Maxwell’s equations in time domain is discussed, which provides flexibility in numerical computing on manifold. For some problems, it takes much less computational time to use the implici...

متن کامل

Discrete Exterior Calculus

The language of modern mechanics is calculus on manifolds, and exterior calculus is an important part of that. It consists of objects like differential forms, general tensors and vector fields on manifolds, and operators that act on these. While the smooth exterior calculus has a long history going back to Cartan, Lie, Grassmann, Hodge, de Rham and many others, the need for a discrete calculus ...

متن کامل

Anil N . Hirani In Partial

The language of modern mechanics is calculus on manifolds, and exterior calculus is an important part of that. It consists of objects like differential forms, general tensors and vector fields on manifolds, and operators that act on these. While the smooth exterior calculus has a long history going back to Cartan, Lie, Grassmann, Hodge, de Rham and many others, the need for a discrete calculus ...

متن کامل

A Primal-to-Primal Discretization of Exterior Calculus on Polygonal Meshes

Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009