Total internal reflection: a deeper look.

نویسندگان

  • A I Mahan
  • C V Bitterli
چکیده

In the present paper, we have presented a Maxwellian boundary-type solution for total internal reflection with unbounded incident waves at an interface between two nonabsorbing media, in which the instantaneous, time varying, and time averaged radiant fluxes have been determined at all points in the two media. Solutions for the s and p polarizations were found for which the instantaneous tangential E and H components and normal components of the radiant flux were continuous in crossing the interface. From these radiant fluxes, it was possible to derive equations for the flow lines, to determine the instantaneous radiant fluxes along these flow lines, and to see how the methods of propagation differed in the two media and for the two polarizations. At the interface, the flow lines and their radiant fluxes experience unusual reflection and refraction processes, follow curved flow lines in the second medium, and return into the first medium with boundary conditions, which are mirror images of those at the points of incidence. These unfamiliar processes in the second medium are due to inhomogeneous waves, whose properties have not been understood. When these instantaneous solutions are extended to time varying and time averaged radiant fluxes, it is interesting to see how incident planes of constant radiant flux and phase experience such complex processes in the second medium and are still able to generate other reflected planes of constant radiant flux and phase in the first medium. These ideas prescribe specific detailed functions for the E and H fields and radiant fluxes in the second medium, which help to answer many long standing questions about the physical processes involved in total internal reflection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...

متن کامل

Total internal reflection fluorescence microscopy in cell biology.

Key events in cellular trafficking occur at the cell surface, and it is desirable to visualize these events without interference from other regions deeper within. This review describes a microscopy technique based on total internal reflection fluorescence which is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation. The technique...

متن کامل

Digital holography of total internal reflection.

We introduce a new microscopy technique termed total internal reflection holographic microscopy (TIRHM). Quantitative phase microscopy by digital holography is used to image the phase profile of light in total internal reflection, which is modulated by the materials present on or near the surface of internal reflection. The imaging characteristics are theoretically modeled and imaging capabilit...

متن کامل

Membrane-proximal calcium transients in stimulated neutrophils detected by total internal reflection fluorescence.

A novel fluorescence microscope/laser optical system was developed to measure fast transients of membrane-proximal versus bulk cytoplasmic intracellular calcium levels in cells labeled with a fluorescent calcium indicator. The method is based on the rapid chopping of illumination of the cells between optical configurations for epifluorescence, which excites predominantly the bulk intracellular ...

متن کامل

Optical phase measurement emphasized

In undergraduate optics laboratory, one thing that is not easily achieved is quantitative measurement of optical phase. The reason is that optical phase measurement usually requires expensive interferometers. We demonstrate measurement of relative optical phase shift upon total internal reflection. Total internal reflection, though known by every student of optics, is remembered by 100% reflect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 1978