Parametric search and problem decomposition for approximating Pareto-optimal paths
نویسندگان
چکیده
The multiobjective shortest path problem arises in many transportation and logistics applications, either as a stand-alone network routing problem or a subroutine of a more complex multiobjective network optimization problem. It has been addressed by different solution strategies, including labeling methods, ranking methods, constraint methods, and parametric methods. Increasing attention has been paid to parametric methods in recent years, partially because of its simple algorithmic logic and its flexibility of being used in different user-preference decision-making environments. The core idea of a parametric algorithm is scalarization, by which a multiobjective shortest path problem can be tackled by repeatedly solving a single-objective subproblem. However, existing parametric algorithms suffer two notorious deficiencies, which considerably limit its further applications: first, typical subroutines for the single-objective subproblem in general cannot capture nonextreme Pareto-optimal paths; second, parametric algorithms for biobjective problems cannot be directly extended to solving multiobjective problems. This paper provides some algorithmic improvements that can partially overcome these deficiencies. In particular, the contribution of this work is twofold: first, in the biobjective parametric solution framework, we propose an approximate label-setting algorithm for the parameterized, constrained single-objective subproblem, which is capable of identifying all extreme paths and a large percentage (i.e., 85–100%) of nonextreme paths; second, we suggest a general projection scheme that can decompose a multiobjective problem into a number of biobjective problems. The approximate parametric algorithm runs in polynomial time. The algorithmic design and solution performance of the algorithm for multiobjective shortest path problems are illustrated, and numerically evaluated and compared with a benchmark algorithm in terms of solution completeness and efficiency. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملEvaluating the Effectiveness of Integrated Benders Decomposition Algorithm and Epsilon Constraint Method for Multi-Objective Facility Location Problem under Demand Uncertainty
One of the most challenging issues in multi-objective problems is finding Pareto optimal points. This paper describes an algorithm based on Benders Decomposition Algorithm (BDA) which tries to find Pareto solutions. For this aim, a multi-objective facility location allocation model is proposed. In this case, an integrated BDA and epsilon constraint method are proposed and it is shown that how P...
متن کاملPOD-Based Multiobjective Optimal Control of Time-Variant Heat Phenomena
In the present paper, a multiobjective optimal control problem governed by a heat equation with time-dependent convection term and bilateral control constraints is considered. For computing Pareto optimal points and approximating the Pareto front, the reference point method is applied. As this method transforms the multiobjective optimal control problem into a series of scalar optimization prob...
متن کاملA Pareto Optimal D* Search Algorithm for Multiobjective Path Planning
Path planning is one of the most vital elements of mobile robotics, providing the agent with a collision-free route through the workspace. The global path plan can be calculated with a variety of informed search algorithms, most notably the A* search method, guaranteed to deliver a complete and optimal solution that minimizes the path cost. D* is widely used for its dynamic replanning capabilit...
متن کاملMulti-Objective Tabu Search Algorithm to Minimize Weight and Improve Formability of Al3105-St14 Bi-Layer Sheet
Nowadays, with extending applications of bi-layer metallic sheets in different industrial sectors, accurate specification of each layer is very prominent to achieve desired properties. In order to predict behavior of sheets under different forming modes and determining rupture limit and necking, the concept of Forming Limit Diagram (FLD) is used. Optimization problem with objective functions an...
متن کامل