Explicit rank-metric codes list-decodable with optimal redundancy

نویسندگان

  • Venkatesan Guruswami
  • Carol Wang
چکیده

We construct an explicit family of linear rank-metric codes over any field Fh that enables efficient list decoding up to a fraction ρ of errors in the rank metric with a rate of 1− ρ− ε, for any desired ρ ∈ (0, 1) and ε > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an Fh-subspace that evades the structured subspaces over an extension field Fht that arise in the linear-algebraic list decoder for Gabidulin codes due to Guruswami and Xing (STOC’13). This subspace is obtained by combining subspace designs contructed by Guruswami and Kopparty (FOCS’13) with subspace-evasive varieties due to Dvir and Lovett (STOC’12). We establish a similar result for subspace codes, which are a collection of subspaces, every pair of which have low-dimensional intersection, and which have received much attention recently in the context of network coding. We also give explicit subcodes of folded ReedSolomon (RS) codes with small folding order that are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list decoding RS codes reduces to list decoding such folded RS codes. However, as we only list decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list decoding RS codes. ∗Research supported in part by NSF CCF-0963975. †[email protected][email protected] ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 170 (2013)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes

We construct an explicit family of linear rank-metric codes over any field Fh that enables efficient list decoding up to a fraction ρ of errors in the rank metric with a rate of 1−ρ−ε, for any desired ρ ∈ (0, 1) and ε > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding beyon...

متن کامل

On the List Decodability of Self-orthogonal Rank Metric Codes

V. Guruswami and N. Resch prove that the list decodability of Fq-linear rank metric codes is as good as that of random rank metric codes in [17]. Due to the potential applications of self-orthogonal rank metric codes, we focus on list decoding of them. In this paper, we prove that with high probability, an Fq-linear self-orthogonal rank metric code over Fn×m q of rate R = (1 − τ)(1 − n mτ) − is...

متن کامل

Random linear binary codes have smaller list sizes than uniformly random binary codes

There has been a great deal of work establishing that random linear codes are as list-decodable as uniformly random codes, in the sense that a random linear binary code of rate $1 - H(p) - \epsilon$ is $(p,O(1/\epsilon))$-list-decodable. In this work, we show that in fact random linear binary codes are \em more \em list-decodable than uniformly random codes, in the sense that the constant in th...

متن کامل

On the List-Decodability of Random Linear Rank-Metric Codes

The list-decodability of random linear rank-metric codes is shown to match that of random rank-metric codes. Specifically, an Fq-linear rank-metric code over F m×n q of rate R = (1 − ρ)(1 − n m ρ) − ε is shown to be (with high probability) list-decodable up to fractional radius ρ ∈ (0, 1) with lists of size at most Cρ,q ε , where Cρ,q is a constant depending only on ρ and q. This matches the bo...

متن کامل

A new class of rank-metric codes and their list decoding beyond the unique decoding radius

Compared with classical block codes, efficient list decoding of rank-metric codes seems more difficult. The evidences to support this view include: (i) so far people have not found polynomial time list decoding algorithms of rank-metric codes with decoding radius beyond (1 − R)/2 (where R is the rate of code) if ratio of the number of rows over the number of columns is constant, but not very sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013