Molecular Intricacies and the Role of ER Stress in Diabetes
نویسندگان
چکیده
Copyright © 2012 Muthuswamy Balasubramanyam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Diabetes mellitus is a metabolic disease caused by both genetic and environmental factors. The pathogenic mech-anism(s) of diabetes are complex, and the complicated networks related to this disease involve distinct signaling pathways. Evidence has recently been provided that ER stress might be involved in the pathogenesis of diabetes and its complications. Early steps in the maturation of secretory proteins take place in the ER, for example, the folding of the nascent polypeptide chains and posttranslational modifications important for proper folding and function of the protein. At a stage (due to several metabolic disturbances), when unfolded polypeptide exceeds the folding and/or processing capacity of the ER, cells are susceptible to a phenomenon referred to as " ER stress. " Under these conditions, specific signaling pathways, termed the unfolded protein response (UPR), are activated to return the ER to its normal physiological state. Prolonged activation of the ER stress and the UPR can lead to cell pathology and subsequent tissue dysfunction. There is now ample evidence that the UPR is chronically activated in many disease states including diabetes and its complications. Therefore, a better understanding of the pathways regulating ER stress and UPR is warranted in order to be instrumental for the design of novel therapies for diabetes and its complications. In this focused issue of the journal, we have assembled several invited reviews, from well-recognized experts in their fields, as well as original research articles. These reviews provide state-of-the-art knowledge dealing with several mechanisms not only related to the genesis of diabetes but also to its progression to diabetic complications, all of which potentially originate or converge from chronic ER stress. In addition, several excellent original research articles demonstrate novel pathophysiologic aspects of diabetes with mechanistic studies central to ER stress and give hope and directionality for identifying new drug targets and developing newer therapeutic measures. Of all the professional secretory cells we possess, β-cells are the most sensitive to ER stress because of the large fluctuations in protein synthesis (including insulin) they face daily. M.-K. Kim et al. have reviewed how this " protein quality-control machinery " of the cell is responsible for appropriate insulin biosynthesis and how ER stress plays an important …
منابع مشابه
Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملZanthoxylum Alatum Attenuates Chronic Restraint Stress Adverse Behavioral Effects Via the Mitigation of Oxidative Stress and Modulating the Expression of Genes Involved in Endoplasmic Reticulum Stress in Mice
Introduction: The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins’ synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatu...
متن کاملNew Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis
Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...
متن کاملRole of oxygen and nitrogen free radicals in diabetes-induced atherosclerosis and effects of exercise on it
Free radical can be defined as a molecule or molecular fragments containing unpaired electron in the outer orbital, which react with nearby molecules to get stability. There are two types of them in the body: oxygen free radicals and nitrogen free radicals. Our body has an antioxidant defense system which prevents accumulation of these radicals. There is a balance between free radical produc...
متن کاملEndoplasmic Reticulum Stress and Diabetic Cardiomyopathy
The endoplasmic reticulum (ER) is an organelle entrusted with lipid synthesis, calcium homeostasis, protein folding, and maturation. Perturbation of ER-associated functions results in an evolutionarily conserved cell stress response, the unfolded protein response (UPR) that is also called ER stress. ER stress is aimed initially at compensating for damage but can eventually trigger cell death if...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012