Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of F(X) in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy.

نویسندگان

  • Gaozhong Shen
  • Mikhail L Antonkine
  • Art van der Est
  • Ilya R Vassiliev
  • Klaus Brettel
  • Robert Bittl
  • Stephan G Zech
  • Jindong Zhao
  • Dietmar Stehlik
  • Donald A Bryant
  • John H Golbeck
چکیده

The rubA gene was insertionally inactivated in Synechococcus sp. PCC 7002, and the properties of photosystem I complexes were characterized spectroscopically. X-band EPR spectroscopy at low temperature shows that the three terminal iron-sulfur clusters, F(X), F(A), and F(B), are missing in whole cells, thylakoids, and photosystem (PS) I complexes of the rubA mutant. The flash-induced decay kinetics of both P700(+) in the visible and A(1)- in the near-UV show that charge recombination occurs between P700(+) and A(1)- in both thylakoids and PS I complexes. The spin-polarized EPR signal at room temperature from PS I complexes also indicates that forward electron transfer does not occur beyond A(1). In agreement, the spin-polarized X-band EPR spectrum of P700(+) A(1)- at low temperature shows that an electron cycle between A(1)- and P700(+) occurs in a much larger fraction of PS I complexes than in the wild-type, wherein a relatively large fraction of the electrons promoted are irreversibly transferred to [F(A)/F(B)]. The electron spin polarization pattern shows that the orientation of phylloquinone in the PS I complexes is identical to that of the wild type, and out-of-phase, spin-echo modulation spectroscopy shows the same P700(+) to A(1)- center-to-center distance in photosystem I complexes of wild type and the rubA mutant. In contrast to the loss of F(X), F(B), and F(A), the Rieske iron-sulfur protein and the non-heme iron in photosystem II are intact. It is proposed that rubredoxin is specifically required for the assembly of the F(X) iron-sulfur cluster but that F(X) is not required for the biosynthesis of trimeric P700-A(1) cores. Since the PsaC protein requires the presence of F(X) for binding, the absence of F(A) and F(B) may be an indirect result of the absence of F(X).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a Synechococcus sp. strain PCC 7002 spontaneous mutant strain defective in accumulation of photosystem II core chlorophyll-protein complexes.

Two photosystem II-associated chlorophyll-protein complexes of Synechococcus sp. strain PCC 7002 were identified. Their polypeptide compositions were similar to those of chlorophyll-containing antenna complexes of other cyanobacteria. Strain GT8B did not possess the complex responsible for 695-nm fluorescence and was unable to grow photoautotrophically; hence, this complex is necessary for phot...

متن کامل

Rapid electron transfer to photosystem I and unusual spectral features of cytochrome c(6) in Synechococcus sp. PCC 7002 in vivo.

Cytochrome c(6) donates electrons to photosystem I (PS I) in Synechococcus sp. PCC 7002. In this work, we provide evidence for rapid electron transfer (t(1/2) = 3 micros) from cytochrome c(6) to PS I in this cyanobacterium in vivo, indicating prefixation of the reduced donor protein to the photosystem. We have investigated the cytochrome c(6)-PS I interaction by laser flash-induced spectroscopy...

متن کامل

Thermal protection of the oxygen-evolving machinery by PsbU, an extrinsic protein of photosystem II, in Synechococcus species PCC 7002.

The evolution of oxygen is the reaction that is the most susceptible to heat in photosynthesis. We showed previously that, in the cyanobacterium Synechococcus sp. PCC 7002, some protein factors located on the thylakoid membranes are involved in the stabilization of this reaction against heat-induced inactivation, and we identified cytochrome C550 as one such factor (Y. Nishiyama, H. Hayashi, T....

متن کامل

Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002

Synechococcus sp. PCC 7002 was grown to steady state in optically thin turbidostat cultures under conditions for which light quantity and quality was systematically varied by modulating the output of narrow-band LEDs. Cells were provided photons absorbed primarily by chlorophyll (680 nm) or phycocyanin (630 nm) as the organism was subjected to four distinct mono- and dichromatic regimes. During...

متن کامل

Anchoring a Plant Cytochrome P450 via PsaM to the Thylakoids in Synechococcus sp. PCC 7002: Evidence for Light-Driven Biosynthesis

Plants produce an immense variety of specialized metabolites, many of which are of high value as their bioactive properties make them useful as for instance pharmaceuticals. The compounds are often produced at low levels in the plant, and due to their complex structures, chemical synthesis may not be feasible. Here, we take advantage of the reducing equivalents generated in photosynthesis in de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 23  شماره 

صفحات  -

تاریخ انتشار 2002