A Simple Stochastic Parameterization for Reduced Models of Multiscale Dynamics

نویسندگان

  • Rafail Abramov
  • Mehrdad Massoudi
چکیده

Multiscale dynamics are frequently present in real-world processes, such as the atmosphere-ocean and climate science. Because of time scale separation between a small set of slowly evolving variables and much larger set of rapidly changing variables, direct numerical simulations of such systems are difficult to carry out due to many dynamical variables and the need for an extremely small time discretization step to resolve fast dynamics. One of the common remedies for that is to approximate a multiscale dynamical systems by a closed approximate model for slow variables alone, which reduces the total effective dimension of the phase space of dynamics, as well as allows for a longer time discretization step. Recently, we developed a new method for constructing a deterministic reduced model of multiscale dynamics where coupling terms were parameterized via the Fluctuation-Dissipation theorem. In this work we further improve this previously developed method for deterministic reduced models of multiscale dynamics by introducing a new method for parameterizing slow-fast interactions through additive stochastic noise in a systematic fashion. For the two-scale Lorenz 96 system with linear coupling, we demonstrate that the new method is able to recover additional features of multiscale dynamics in a stochastically forced reduced model, which the previously developed deterministic method could not reproduce.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain and Time-delay Reduced Modeling of Nonlinear Systems

Multiscale modeling problems have become an active research area in recent years. There are many systems involving a large set of variables and these variables mostly behave in largely different time scales. It is necessary to derive proper effective models when one needs to obtain dynamical models that reproduce statistical properties of essential variables without wasting the computational ti...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Multiscale Stochastic Realization

We develop a realization theory for a class of Inultiscale stochastic processes having whitenoise driven, scale-recursive dynamics that are indexed by the nodes of a tree. Given the correlation structure of a 1-D or 2-D random process, our methods provide a systematic way to realize the given correlation as the finest scale of a multiscale process. Motivated by Akaike's use of canonical correla...

متن کامل

Stochastic Superparameterization and Multiscale Filtering of Turbulent Tracers

Data assimilation or filtering combines a numerical forecast model and observations to provide accurate statistical estimation of the state of interest. In this paper we are concerned with accurate data assimilation of a sparsely observed passive tracer advected in turbulent flows using a reduced-order forecast model. The turbulent flows which contain anisotropic and inhomogeneous structures su...

متن کامل

A canonical correlations approach to multiscale stochastic realization

We develop a realization theory for a class of multiscale stochastic processes having white-noise driven, scale-recursive dynamics that are indexed by the nodes of a tree. Given the correlation structure of a 1-D or 2-D random process, our methods provide a systematic way to realize the given correlation as the finest scale of a multiscale process. Motivated by Akaike’s use of canonical correla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015