Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle.

نویسندگان

  • Xiao-Xia Han
  • Adrian Chabowski
  • Narendra N Tandon
  • Jorge Calles-Escandon
  • Jan F C Glatz
  • Joost J F P Luiken
  • Arend Bonen
چکیده

We examined, in muscle of lean and obese Zucker rats, basal, insulin-induced, and contraction-induced fatty acid transporter translocation and fatty acid uptake, esterification, and oxidation. In lean rats, insulin and contraction induced the translocation of the fatty acid transporter FAT/CD36 (43 and 41%, respectively) and plasma membrane-associated fatty acid binding protein (FABPpm; 19 and 60%) and increased fatty acid uptake (63 and 40%, respectively). Insulin and contraction increased lean muscle palmitate esterification and oxidation 72 and 61%, respectively. In obese rat muscle, basal levels of sarcolemmal FAT/CD36 (+33%) and FABPpm (+14%) and fatty acid uptake (+30%) and esterification (+32%) were increased, whereas fatty acid oxidation was reduced (-28%). Insulin stimulation of obese rat muscle increased plasmalemmal FABPpm (+15%) but not plasmalemmal FAT/CD36, blunted fatty acid uptake and esterification, and failed to reduce fatty acid oxidation. In contracting obese rat muscle, the increases in fatty acid uptake and esterification and FABPpm translocation were normal, but FAT/CD36 translocation was impaired and fatty acid oxidation was blunted. There was no relationship between plasmalemmal fatty acid transporters and palmitate partitioning. In conclusion, fatty acid metabolism is impaired at several levels in muscles of obese Zucker rats; specifically, they are 1) insulin resistant with respect to FAT/CD36 translocation and fatty acid uptake, esterification, and oxidation and 2) contraction resistant with respect to fatty acid oxidation and FAT/CD36 translocation, but, conversely, 3) obese muscles are neither insulin nor contraction resistant at the level of FABPpm. Finally, 4) there is no evidence that plasmalemmal fatty acid transporters contribute to the channeling of fatty acids to specific metabolic destinations within the muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes.

In myocytes and adipocytes, insulin increases fatty acid translocase (FAT)/CD36 translocation to the plasma membrane (PM), enhancing fatty acid (FA) uptake. Evidence links increased hepatic FAT/CD36 protein amount and gene expression with hyperinsulinemia in animal models and patients with fatty liver, but whether insulin regulates FAT/CD36 expression, amount, distribution, and function in hepa...

متن کامل

The Regulation of Fatty Acid Transport and Transporters in Insulin-, and Contraction- Stimulated Skeletal Muscle

THE REGULATION OF FATTY ACID TRANSPORT AND TRANSPORTERS IN INSULIN-, AND CONTRACTION-STIMULATED SKELETAL MUSCLE Swati S. Jain Advisor: University of Guelph, 2011 Professor A. Bonen The clearance of circulating glucose and long-chain fatty acids (FA) into skeletal muscle involves the translocation of glucose transporter GLUT4, fatty acid translocase (FAT/CD36), plasma membrane associated fatty a...

متن کامل

Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle.

Fatty acid transport proteins are present on the plasma membrane and are involved in the uptake of long-chain fatty acids into skeletal muscle. The present study determined whether acute endurance exercise increased the plasma membrane content of fatty acid transport proteins in rat and human skeletal muscle and whether the increase was accompanied by an increase in long-chain fatty acid transp...

متن کامل

In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.

Intramuscular triacylglycerol (IMTG) accumulation in obesity has been attributed to increased fatty acid transport and/or to alterations in mitochondrial fatty acid oxidation. Alternatively, an imbalance in these two processes may channel fatty acids into storage. Therefore, in red and white muscles of lean and obese Zucker rats, we examined whether the increase in IMTG accumulation was attribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 293 2  شماره 

صفحات  -

تاریخ انتشار 2007