Life cycle energy and GHG emission within the Turin metropolitan area urban water cycle
نویسندگان
چکیده
The aim of this study is to analyze the urban water cycle in the Turin Metropolitan Area (Northwestern Italy), with a focus on quantifying the annual life cycle energy consumption and greenhouse gas emissions. The study made use Material Flow Analysis and Life Cycle Assessment methods for a defined urban water cycle system (ATO3) operated by one water utility (SMAT S.p.A.), and examines all main sub-systems of the entire urban water cycle. The study quantified the annual direct and indirect energy consumption and the direct and indirect greenhouse gas emissions related to system-wide energy consumption and the production and transportation of chemicals used in water treatment and wastewater treatment plants. It is found that the wastewater treatment consumes the biggest share of the total energy (44%), but a significant part of this energy demand is provided by the energy in biogas produced from wastewater sludge. On the basis of this study it was possible to provide strategic recommendations to the water utility on how to improve the water/energy/carbon nexus and contribute better to sustainability performance of urban water cycle systems. © 2014 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the Organizing Committee of WDSA 2014.
منابع مشابه
A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories.
Greenhouse gas (GHG) accounting for individual cities is confounded by spatial scale and boundary effects that impact the allocation of regional material and energy flows. This paper develops a demand-centered, hybrid life-cycle-based methodology for conducting city-scale GHG inventories that incorporates (1) spatial allocation of surface and airline travel across colocated cities in larger met...
متن کاملGreenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. Cities
A hybrid life cycle-based trans-boundary greenhouse gas (GHG) emissions footprint is elucidated at the city-scale and evaluated for 8 US cities. The method incorporates end-uses of energy within city boundaries, plus cross-boundary demand for airline/freight transport and embodied energy of four key urban materials [food, water, energy (fuels), and shelter (cement)], essential for life in all c...
متن کاملGreenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. Cities
A hybrid life cycle-based trans-boundary greenhouse gas (GHG) emissions footprint is elucidated at the city-scale and evaluated for 8 US cities. The method incorporates end-uses of energy within city boundaries, plus cross-boundary demand for airline/freight transport and embodied energy of four key urban materials [food, water, energy (fuels), and shelter (cement)], essential for life in all c...
متن کاملAccounting for Greenhouse Gas Emissions of Materials at the Urban Scale-Relating Existing Process Life Cycle Assessment Studies to Urban Material and Waste Composition
Although many cities are engaged in efforts to calculate and reduce their greenhouse gas (GHG) emissions, most are accounting for “scope one” emissions i.e., GHGs produced within urban boundaries (for example, following the protocol of the International Council for Local Environmental Initiatives). Cities should also account for the emissions associated with goods, services and materials consum...
متن کاملCost-Effectiveness of Green Roofs
Life-cycle assessment was used to evaluate the widespread installation of green roofs in a typical urban mixed-use neighborhood. Market prices of materials, construction, energy conservation, storm-water management, and greenhouse gas GHG emission reductions were used to evaluate private and social costs and benefits. Results suggest green roofs are currently not cost effective on a private cos...
متن کامل