Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers.

نویسندگان

  • S Gallego
  • M Ortuño
  • C Neipp
  • A Márquez
  • A Beléndez
  • I Pascual
  • J Kelly
  • J Sheridan
چکیده

In recent years the interest in thick holographic recording materials for storage applications has increased. In particular, photopolymers are interesting materials for obtaining inexpensive thick dry layers with low noise and high diffraction efficiencies. Nonetheless, as will be demonstrated in this work, the attenuation in depth of light during the recording limits dramatically the effective optical thickness of the material. This effect must be taken into account whenever thick diffraction gratings are recorded in photopolymer materials. In this work the differences between optical and physical thickness are analyzed, applying a method based on the Rigorous Coupled Wave Theory and taking into account the attenuation in depth of the refractive index profile. By doing this the maximum optical thickness that can be achieved can be calculated. When the effective thickness is known, then the real storage capacity of the material can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-dimensional characterization of thick grating formation in PVA/AA based photopolymer.

Large thickness is required in holographic recording materials to be used as holographic memories. Photopolymers have proved to be a good alternative to construct holographic memories. Nevertheless, modeling the behavior of thick layers poses some problems due to high absorption of the dye, as discussed in previous papers. In this study, the gratings stored in photopolymers based on PVA/AA are ...

متن کامل

Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers.

In order to use photopolymers in the recording of holographic memories, high physical thickness is required. This generates many problems associated with the attenuation of light in the recording due to Beer's law. One of the more significant disadvantages is the fact that there are differences between the physical thickness of the material and the optical thickness of the holograms recorded. T...

متن کامل

Diffraction Gratings for Neutrons from Polymers and Holographic Polymer-Dispersed Liquid Crystals

We discuss the applicability of holographically recorded gratings in photopolymers and holographic polymer-dispersed liquid crystals as neutron optical elements. An experimental investigation of their properties for light and neutrons with different grating spacings and grating thicknesses is performed. The angular dependencies of the diffraction efficiencies for those gratings are interpreted ...

متن کامل

Diffraction Gratings for Neutrons from Polymers and Holographic Polymer-Dispersed Nanocomposites

We discuss the applicability of holographically recorded gratings in photopolymers and holographic polymer-dispersed liquid crystals as neutron optical elements. An experimental investigation of their properties for light and neutrons with different grating spacings and grating thicknesses is performed. The angular dependencies of the diffraction efficiencies for those gratings are interpreted ...

متن کامل

Holographic recording in acrylamide photopolymers: thickness limitations.

Holographic recording in thick photopolymer layers is important for application in holographic data storage, volume holographic filters, and correlators. Here, we studied the characteristics of acrylamide-based photopolymer layers ranging in thickness from 250 microm to 1 mm. For each thickness, samples with three different values of absorbance were studied. By measuring the diffraction efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2005