RRE-deleting self-inactivating and self-activating HIV-1 vectors for improved safety

نویسنده

  • Narasimhachar Srinivasakumar
چکیده

Retroviruses have been shown to efficiently delete sequences between repeats as a consequence of the template switching ability of the viral reverse transcriptase. To evaluate this approach for deriving safety-modified lentiviral vectors, we created HIV-1 vectors engineered to delete the Rev-response element (RRE) during reverse-transcription by sandwiching the RRE between two non-functional hygromycin phosphotransferase sequences. Deletion of the RRE during reverse-transcription lead to the reconstitution of a functional hygromycin phosphotransferase gene in the target cell. The efficiency of functional reconstitution, depending on vector configuration, was between 12% and 23%. Real-time quantitative PCR of genomic DNA of cells transduced with the RRE-deleting vectors that were selected using an independent drug resistance marker, which measured both functional and nonfunctional recombination events, indicated that the overall efficiency of RRE deletion of hygromycin phosphotransferase gene, was between 73.6% and 83.5%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery.

In vivo transduction of nondividing cells by human immunodeficiency virus type 1 (HIV-1)-based vectors results in transgene expression that is stable over several months. However, the use of HIV-1 vectors raises concerns about their safety. Here we describe a self-inactivating HIV-1 vector with a 400-nucleotide deletion in the 3' long terminal repeat (LTR). The deletion, which includes the TATA...

متن کامل

Refinement of lentiviral vector for improved RNA processing and reduced rates of self inactivation repair

BACKGROUND Lentiviral gene therapy vectors are now finding clinical application. In order to fully exploit their potential it is important that vectors are made as efficient and as safe as possible. Accordingly, we have modified a previously reported vector to improve RNA processing, minimise Human Immunodeficiency Virus Type-1 (HIV-1) sequence content and reduce repair of the self inactivating...

متن کامل

Rev-Free HIV-1 Gene Delivery System for Targeting Rev-RRE-Crm1 Nucleocytoplasmic RNA Transport Pathway

The use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the production of vector stocks, we show...

متن کامل

Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells.

The interaction of human immunodeficiency virus (HIV)-derived vectors with wild-type virus was analyzed in transduced cells. Vector transcripts upregulated by infection had no measurable effect on HIV type 1 (HIV-1) expression but competed efficiently for encapsidation, inhibiting the infectivity and spread of HIV-1 in culture and leading to mobilization and recombination of the vector. These e...

متن کامل

RNA 3' readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy.

The expression of reporter genes driven by the same human elongation factor 1alpha (EF1alpha) promoter in murine leukemia virus (MLV)- and human immunodeficiency virus type 1 (HIV-1)-based vectors was studied in either transfected or virally transduced cells. The HIV-1 vectors consistently expressed 3 to 10 times higher activity than the MLV vectors at both the RNA and protein levels. The diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013