Maintenance of airway caliber in isolated airways by deep inspiration and tidal strains.

نویسندگان

  • Adam S LaPrad
  • Adrian R West
  • Peter B Noble
  • Kenneth R Lutchen
  • Howard W Mitchell
چکیده

Deep inspirations (DIs) are large periodic breathing maneuvers that regulate airway caliber and prevent airway obstruction in vivo. This study characterized the intrinsic response of the intact airway to DI, isolated from parenchymal attachments and other in vivo interactions. Porcine isolated bronchial segments were constricted with carbachol and subjected to transmural pressures of 5-10 cmH2O at 0.25 Hz (tidal breathing) interspersed with single DIs of amplitude 5-20 cmH2O, 5-30 cmH2O, or 5-40 cmH2O (6-s duration) or DI of amplitude 5-30 cmH2O (30-s duration). Tidal breathing was ceased after DI in a subset of airways and in control airways in which no DI was performed. Luminal cross-sectional area was measured using a fiber-optic endoscope. Bronchodilation by DI was amplitude dependent; 5-20 cmH2O DIs produced less dilation than 5-30 cmH2O and 5-40 cmH2O DIs (P=0.003 and 0.012, respectively). Effects of DI duration were not significant (P=0.182). Renarrowing after DI followed a monoexponential decay function to pre-DI airway caliber with time constants between 27.4+/-4.3 and 36.3+/-6.9 s. However, when tidal breathing was ceased after DI, further bronchoconstriction occurred within 30s. This response was identical in both the presence and absence of DI (P=0.919). We conclude that the normal bronchodilatory response to DI occurs as a result of the direct mechanical effects of DI on activated ASM in the airway wall. Further bronchoconstriction occurs by altering the airway wall stress following DI, demonstrating the importance of continual transient strains in maintaining airway caliber.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selected contribution: airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations.

In 9 healthy and 14 asthmatic subjects before and after a standard bronchial challenge and a modified [deep inspiration (DI), inhibited] bronchial challenge and after albuterol, we tracked airway caliber by synthesizing a method to measure airway resistance (Raw; i.e., lung resistance at 8 Hz) in real time. We determined the minimum Raw achievable during a DI to total lung capacity and the subs...

متن کامل

Tracking variations in airway caliber by using total respiratory vs. airway resistance in healthy and asthmatic subjects.

An index of airway caliber can be tracked in near-real time by measuring airway resistance (Raw) as indicated by lung resistance at 8 Hz. These measurements require the placing of an esophageal balloon. The objective of this study was to establish whether total respiratory system resistance (Rrs) could be used rather than Raw to track airway caliber, thereby not requiring an esophageal balloon....

متن کامل

Responsiveness of the human airway in vitro during deep inspiration and tidal oscillation.

In healthy individuals, deep inspiration produces bronchodilation and reduced airway responsiveness, which may be a response of the airway wall to mechanical stretch. The aim of this study was to examine the in vitro response of isolated human airways to the dynamic mechanical stretch associated with normal breathing. Human bronchial segments (n = 6) were acquired from patients without airflow ...

متن کامل

Can tidal breathing with deep inspirations of intact airways create sustained bronchoprotection or bronchodilation?

Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm os...

متن کامل

Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.

Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 105 2  شماره 

صفحات  -

تاریخ انتشار 2008