Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

نویسندگان

  • Liu
  • Yuan
  • Meyer
  • Meyer-Hofmeister
  • Xie
چکیده

We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaporation of accretion disks around black holes: the disk-corona transition and the connection to the ADAF

We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister 1994) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well studied black hole binaries we take the mass flow rates derived from a fit of the ADAF mod...

متن کامل

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

A Simplified Solution for Advection Dominated Accretion Flows with Outflow

The existence of outflow in the advection dominated accretion flows has been confirmed by both numerical simulations and observations. The outow models for ADAF have been investigated by several groups with a simple self similar solution. But this solution is inaccurate at the inner regions and can not explain the emitted spectrum of the flow; so, it is necessary to obtain a global solution for...

متن کامل

Vertical structure of the accreting two-temperature corona and the transition to an ADAF

We investigate the model of the disc/corona accretion flow around the black hole. Hot accreting advective corona is described by the two-temperature plasma in pressure equilibrium with the cold disk. Corona is powered by accretion but it also exchanges energy with the disk through the radiative interaction and conduction. The model, parameterized by the total (i.e. disk plus corona) accretion r...

متن کامل

Disk/corona model: The transition to ADAF

We propose a model of the accretion flow onto a black hole consisting of the accretion disk with an accreting two-temperature corona. The model is based on assumptions about the radiative and conductive energy exchange between the two phases and the pressure equilibrium. The complete model is determined by the mass, the accretion rate, and the viscosity parameter. We present the radial dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Astrophysical journal

دوره 527 1  شماره 

صفحات  -

تاریخ انتشار 1999