Studying the electronic and phononic structure of penta-graphane
نویسندگان
چکیده
In this paper, we theoretically consider a two dimensional nanomaterial which is a form of hydrogenated penta-graphene; we call it penta-graphane. This structure is obtained by adding hydrogen atoms to the sp2 bonded carbon atoms of penta-graphene. We investigate the thermodynamic and mechanical stability of penta-graphane. We also study the electronic and phononic structure of penta-graphane. Firstly, we use density functional theory with the revised Perdew-Burke-Ernzerhof approximation to compute the band structure. Then one-shot GW (G0W0) approach for estimating accurate band gap is applied. The indirect band gap of penta-graphane is 5.78 eV, which is close to the band gap of diamond. Therefore, this new structure is a good electrical insulator. We also investigate the structural stability of penta-graphane by computing the phonon structure. Finally, we calculate its specific heat capacity from the phonon density of states. Penta-graphane has a high specific heat capacity, and can potentially be used for storing and transferring energy.
منابع مشابه
An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملAbstract for an Invited Paper for the MAR11 Meeting of The American Physical Society A theoretical study of chemical functionalisation of graphene: graphane and graphXene
for an Invited Paper for the MAR11 Meeting of The American Physical Society A theoretical study of chemical functionalisation of graphene: graphane and graphXene OLLE ERIKSSON, Uppsala University Chemical functionalisation of graphene is reported from a first principles, theoretical study [1]. The electronic structure, including band gap, of H adsorbed on graphene (i.e. graphane) is discussed i...
متن کاملStructural and thermodynamic properties of Alumina
We have investigated the electronic structure and thermodynamic properties of supercell of the -Al2O3 by first-principles calculation in framework of density functional theory (DFT) and full potential linearized augmented plane wave (FP-LAPW) with generalized gradient approximation (GGA) and by quasi-harmonic Debye model. Our calculated value for direct band gap of α-Al2O3 is 7.2 eV which i...
متن کاملInvestigation of phononic and thermal properties of the compound FeAl and Fe3Al using pseudopotentials method (Research Article)
Iron aluminide intermetallic compound, including compounds that have great features is that it's so great properties, due to its increasing use in industry is different. In thiswork, structural and dynamic properties of FeAl compounds including the structure of energybands, density of states, phonon and thermal properties in two-phase structures regularly evaluated and calculated. Calculations ...
متن کاملGraphene’s cousin: the present and future of graphane
The so-called graphane is a fully hydrogenated form of graphene. Because it is fully hydrogenated, graphane is expected to have a wide bandgap and is theoretically an electrical insulator. The transition from graphene to graphane is that of an electrical conductor, to a semiconductor, and ultimately to an electrical insulator. This unique characteristic of graphane has recently gained both acad...
متن کامل