Sparse Coding with Invariance Constraints

نویسندگان

  • Heiko Wersing
  • Julian Eggert
  • Edgar Körner
چکیده

We suggest a new approach to optimize the learning of sparse features under the constraints of explicit transformation symmetries imposed on the set of feature vectors. Given a set of basis feature vectors and invariance transformations, from each basis feature a family of transformed features is generated. We then optimize the basis features for optimal sparse reconstruction of the input pattern ensemble using the whole transformed feature family. If the predefined transformation invariance coincides with an invariance in the input data, we obtain a less redundant basis feature set, compared to sparse coding approaches without invariances. We demonstrate the application to a test scenario of overlapping bars and the learning of receptive fields in hierarchical visual cortex models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Optimized Features for Hierarchical Models of Invariant Object Recognition

There is an ongoing debate over the capabilities of hierarchical neural feedforward architectures for performing real-world invariant object recognition. Although a variety of hierarchical models exists, appropriate supervised and unsupervised learning methods are still an issue of intense research. We propose a feedforward model for recognition that shares components like weight sharing, pooli...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Sparse and Transformation-Invariant Hierarchical NMF

The hierarchical non-negative matrix factorization (HNMF) is a multilayer generative network for decomposing strictly positive data into strictly positive activations and base vectors in a hierarchical manner. However, the standard hierarchical NMF is not suited for overcomplete representations and does not code efficiently for transformations in the input data. Therefore we extend the standard...

متن کامل

Sparse Coding for Learning Interpretable Spatio-Temporal Primitives

Sparse coding has recently become a popular approach in computer vision to learn dictionaries of natural images. In this paper we extend the sparse coding framework to learn interpretable spatio-temporal primitives. We formulated the problem as a tensor factorization problem with tensor group norm constraints over the primitives, diagonal constraints on the activations that provide interpretabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003