Dutkay and Palle

نویسندگان

  • DORIN ERVIN
  • E. T. JORGENSEN
چکیده

We exploit the fact that the classical Bernoulli systems are con-tractive iterated function systems (IFS) of affine type to prove a number of properties of the infinite Bernoulli convolution measures ν λ. We develop and use a new duality notion for affine IFSs. This duality is based on a natural transfer operator R W , and on an associated random walk process Px. We show that the absolute-square of the Fourier transform of ν λ is the unique solution to a certain functional equation involving Px; and we use this in turn to establish a detailed harmonic analysis of the transfer operator R W , from which we derive our main results for the Bernoulli convolutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oversampling Generates Super - Wavelets

We show that the second oversampling theorem for affine systems generates super-wavelets. These are frames generated by an affine structure on the space L 2 (R d) ⊕ ... ⊕ L 2 (R d) p times .

متن کامل

ar X iv : m at h / 05 01 14 5 v 1 [ m at h . D S ] 1 0 Ja n 20 05 WAVELET CONSTRUCTIONS IN NON - LINEAR DYNAMICS

We construct certain Hilbert spaces associated with a class of non-linear dynamical systems X. These are systems which arise from a generalized self-similarity, and an iterated substitution. We show that when a weight function W on X is given, then we may construct associated Hilbert spaces H(W) of L 2-martingales which have wavelet bases.

متن کامل

Disintegration of Projective Measures Dorin Ervin Dutkay and Palle

In this paper, we study a class of quasi-invariant measures on paths generated by discrete dynamical systems. Our main result characterizes the subfamily of these measures which admit a certain disintegration. This is a disintegration with respect to a random walk Markov process which is indexed by the starting point of the paths. Our applications include wavelet constructions on Julia sets of ...

متن کامل

Disintegration of Projective Measures

In this paper, we study a class of quasi-invariant measures on paths generated by discrete dynamical systems. Our main result characterizes the subfamily of these measures which admit a certain disintegration. This is a disintegration with respect to a random walk Markov process which is indexed by the starting point of the paths. Our applications include wavelet constructions on Julia sets of ...

متن کامل

ar X iv : m at h / 04 07 51 7 v 2 [ m at h . C A ] 3 0 Ju l 2 00 4 OPERATORS , MARTINGALES , AND MEASURES ON PROJECTIVE LIMIT SPACES

Let X be a compact Hausdorff space. We study finite-to-one map-pings r : X → X, onto X, and measures on the corresponding projective limit space X∞(r). We show that the invariant measures on X∞(r) correspond in a one-to-one fashion to measures on X which satisfy two identities. Moreover, we identify those special measures on X∞(r) which are associated via our correspondence with a function V on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005