A substantial fraction of phytoplankton-derived DON is resistant to degradation by a metabolically versatile, widely distributed marine bacterium

نویسندگان

  • Luca Polimene
  • Darren Clark
  • Susan Kimmance
  • Paul McCormack
چکیده

The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Protease Release of the Resistant Diatom Chaetoceros didymus in Response to Lytic Enzymes from an Algicidal Bacterium

Marine lytic bacteria can have a substantial effect on phytoplankton and are even capable to terminate blooms of microalgae. The bacterium Kordia algicida was reported to lyse cells of the diatom Skeletonema costatum and several other diatoms by a quorum sensing controlled excretion of proteases. However the diatom Chaetoceros didymus is fully resistant against the bacterial enzymes. We show th...

متن کامل

Limnol. Oceanogr., 44(6), 1999, 1477–1485

Access to bioavailable nitrogen often limits primary production in marine and freshwater ecosystems. Around 70% of nitrogen transported by rivers worldwide consists of dissolved organic nitrogen (DON), but its bioavailability has been poorly investigated. To assess the potential bacterial growth on DON, we developed a bioassay employing natural DON and bacterial inocula in medium manipulated to...

متن کامل

Phytoplankton DON uptake

DON as a source of bioavailable nitrogen for phytoplankton D. A. Bronk, J. H. See, P. Bradley, and L. Killberg Department of Physical Sciences, The College of William and Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA Geo-Marine Inc., 550 East 15th Street, Plano, TX 75074, USA Received: 26 June 2006 – Accepted: 14 July 2006 – Published: 7 August 2006 ...

متن کامل

The role of the picoeukaryote Aureococcus anophagefferens in cycling of marine high–molecular weight dissolved organic nitrogen

Environmental evidence suggests that Aureococcus anophagefferens (Pelagophyceae), a eukaryotic picoplankton that blooms in coastal seawaters, can outcompete other organisms because of its ability to use abundant dissolved organic nitrogen (DON). To test this hypothesis, we isolated A. anophagefferens in axenic culture and monitored its growth on high–molecular weight (HMW) DON collected from se...

متن کامل

Preliminary Characterization of Extracellular Allelochemicals of the Toxic Marine Dinoflagellate Alexandrium tamarense Using a Rhodomonas salina Bioassay

Members of the marine dinoflagellate genus Alexandrium are known to exude allelochemicals, unrelated to well-known neurotoxins (PSP-toxins, spirolides), with negative effects on other phytoplankton and marine grazers. Physico/chemical characterization of extracellular lytic compounds of A. tamarense, quantified by Rhodomonas salina bioassay, showed that the lytic activity, and hence presumably ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017