Finite Sphere Packings and Sphere Coverings
نویسنده
چکیده
منابع مشابه
Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations.
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding sta...
متن کاملDeriving Finite Sphere Packings
Sphere packing problems have a rich history in both mathematics and physics; yet, relatively few analytical analyses of sphere packings exist, and answers to seemingly simple questions are unknown. Here, we present an analytical method for deriving all packings of n spheres in R3 satisfying minimal rigidity constraints (≥ 3 contacts per sphere and ≥ 3n− 6 total contacts). We derive such packing...
متن کاملReformulation of the covering and quantizer problems as ground states of interacting particles.
It is known that the sphere-packing problem and the number-variance problem (closely related to an optimization problem in number theory) can be posed as energy minimizations associated with an infinite number of point particles in d-dimensional Euclidean space R(d) interacting via certain repulsive pair potentials. We reformulate the covering and quantizer problems as the determination of the ...
متن کاملDensity Doubling, Double-circulants, and New Sphere Packings
New nonlattice sphere packings in dimensions 20, 22, and 44–47 that are denser than the best previously known sphere packings were recently discovered. We extend these results, showing that the density of many sphere packings in dimensions just below a power of 2 can be doubled using orthogonal binary codes. This produces new dense sphere packings in Rn for n = 25, 26, . . . , 31 and 55, 56, . ...
متن کاملSphere Packings, I
We describe a program to prove the Kepler conjecture on sphere packings. We then carry out the first step of this program. Each packing determines a decomposition of space into Delaunay simplices, which are grouped together into finite configurations called Delaunay stars. A score, which is related to the density of packings, is assigned to each Delaunay star. We conjecture that the score of ev...
متن کامل