Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.
نویسندگان
چکیده
Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain reliable results for the liberation of NADH during the initial-rate phase, the reaction was measured with a sensitive recording filter fluorimeter, and the complexes formed with the different dead-end and product inhibitors have been interpreted on the basis of a full dismutation reaction. The results are only consistent with a compulsory ordered reaction mechanism, with the formation of a dead-end binary enzyme-aldehyde complex. Under initial-velocity conditions, the rate of acetate release was calculated to be larger than 2.5 s-1, which is more than ten times that of NADH. The substrate specificity constant (kcat/Km or 1/phiB) with respect to the oxidation of substrates was propan-2-ol>ethanol>acetaldehyde>trimethylacetaldehyde.
منابع مشابه
An examination of the oxidation of aldehydes by horse liver alcohol dehydrogenase.
A lag phase in the spectrophotometric assay progress curve of aldehyde oxidation by HL-ADH was observed and characterised. The aldehyde oxidation and aldehyde dismutation reactions were shown to be related, and a mechanism to explain net aldehyde oxidation was proposed. The spectrophotometric assay was shown to be unsuitable for measurement of kinetic parameters for aldehyde oxidation by HL-ADH...
متن کاملDietary Ethanol Mediates Selection on Aldehyde Dehydrogenase Activity in Drosophila melanogaster.
Ethanol is an important environmental variable for fruit-breeding Drosophila species, serving as a resource at low levels and a toxin at high levels. The first step of ethanol metabolism, the conversion of ethanol to acetaldehyde, is catalyzed primarily by the enzyme alcohol dehydrogenase (ADH). The second step, the oxidation of acetaldehyde to acetate, has been a source of controversy, with so...
متن کاملDietary Ethanol Mediates Selection on Aldehyde Dehydrogenase Activity in Drosophila melanogaster1
SYNOPSIS. Ethanol is an important environmental variable for fruit-breeding Drosophila species, serving as a resource at low levels and a toxin at high levels. The first step of ethanol metabolism, the conversion of ethanol to acetaldehyde, is catalyzed primarily by the enzyme alcohol dehydrogenase (ADH). The second step, the oxidation of acetaldehyde to acetate, has been a source of controvers...
متن کاملThe metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae.
Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in t...
متن کاملKinetics and thermodynamics of ethanol oxidation catalyzed by genetic variants of the alcohol dehydrogenase from Drosophila melanogaster and D. simulans.
Four naturally occurring variants of the alcohol dehydrogenase enzyme (ADH; EC 1.1.1.1) from Drosophila melanogaster and D. simulans, with different primary structures, have been subjected to kinetic studies of ethanol oxidation at five temperatures. Two amino acid replacements in the N-terminal region which distinguish the ADH of D. simulans from the three ADH allozymes of D. melanogaster gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 329 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1998