MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys
نویسندگان
چکیده
Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.
منابع مشابه
The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys.
The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determi...
متن کاملProtection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ
Ischemia-reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. ...
متن کاملLowering Perfusate Temperature From 37°C to 32°C Diminishes Function in a Porcine Model of Ex Vivo Kidney Perfusion
BACKGROUND Ex vivo perfusion (EVP) is a novel method of preservation. However, optimal perfusion conditions remain undetermined. Reducing the temperature of the perfusate to subnormothermia may be beneficial during EVP and improve early graft function. The aim of this study was to investigate whether subnormothermia would influence the conditioning effect of EVP when compared with normothermic ...
متن کاملCold Storage Exacerbates Renal and Mitochondrial Dysfunction Following Transplantation
Long-term renal function is compromised in patients receiving deceased donor kidneys which require cold storage exposure prior to transplantation. It is well established that extended cold storage induces renal damage and several labs, including our own, have demonstrated renal mitochondrial damage after cold storage alone. However, to our knowledge, few studies have assessed renal and mitochon...
متن کاملReactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis
NLRP3/IL-1β activation via thioredoxin (TRX)/thioredoxin-interacting protein (TXNIP) following mitochondria ROS (mtROS) overproduction plays a key role in inflammation. However, the involvement of this process in tubular damage in the kidneys of patients with diabetic nephropathy (DN) is unclear. Here, we demonstrated that mtROS overproduction is accompanied by decreases in TRX expression and T...
متن کامل