Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

نویسندگان

  • Tommaso Zugno
  • Michele Polese
  • Michele Zorzi
چکیده

Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links su er from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at di erent layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities o ered by the ns-3 mmWave module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deplo...

متن کامل

End-to-End Simulation of 5G mmWave Networks

Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation (5G) cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event netwo...

متن کامل

Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding

The next generation of multimedia applications will require the telecommunication networks to support a higher bitrate than today, in order to deliver virtual reality and ultrahigh quality video content to the users. Most of the video content will be accessed from mobile devices, prompting the provision of very high data rates by next generation (5G) cellular networks. A possible enabler in thi...

متن کامل

A Framework for Cross-Layer Evaluation of 5G mmWave Cellular Networks in ns-3

The growing demand for ubiquitous mobile data services along with the scarcity of spectrum in the sub-6 GHz bands has given rise to the recent interest in developing wireless systems that can exploit the large amount of spectrum available in the millimeter wave (mmWave) frequency range. Due to its potential for multi-gigabit and ultra-low latency links, mmWave technology is expected to play a c...

متن کامل

Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration

Communications at frequencies above 10 GHz (the mmWave band) are expected to play a major role for the next generation of cellular networks (5G), because of the potential multi-gigabit, ultra-low latency performance of this technology. mmWave frequencies however suffer from very high isotropic pathloss, which may result in cells with a much smaller coverage area than current LTE macrocells. Hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.06706  شماره 

صفحات  -

تاریخ انتشار 2018