Estimation of deleterious genomic mutation parameters in natural populations by accounting for variable mutation effects across loci.
نویسندگان
چکیده
The genomes of all organisms are subject to continuous bombardment of deleterious genomic mutations (DGM). Our ability to accurately estimate various parameters of DGM has profound significance in population and evolutionary genetics. The Deng-Lynch method can estimate the parameters of DGM in natural selfing and outcrossing populations. This method assumes constant fitness effects of DGM and hence is biased under variable fitness effects of DGM. Here, we develop a statistical method to estimate DGM parameters by considering variable mutation effects across loci. Under variable mutation effects, the mean fitness and genetic variance for fitness of parental and progeny generations across selfing/outcrossing in outcrossing/selfing populations and the covariance between mean fitness of parents and that of their progeny are functions of DGM parameters: the genomic mutation rate U, average homozygous effect s, average dominance coefficient h, and covariance of selection and dominance coefficients cov(h, s). The DGM parameters can be estimated by the algorithms we developed herein, which may yield improved estimation of DGM parameters over the Deng-Lynch method as demonstrated by our simulation studies. Importantly, this method is the first one to characterize cov(h, s) for DGM.
منابع مشابه
Estimation of parameters of deleterious mutations in partial selfing or partial outcrossing populations and in nonequilibrium populations.
The Deng-Lynch method was developed to estimate the rate and effects of deleterious genomic mutations (DGM) in natural populations under the assumption that populations are either completely outcrossing or completely selfing and that populations are at mutation-selection (M-S) balance. However, in many plant and animal populations, selfing or outcrossing is often incomplete in that a proportion...
متن کاملCharacterization of deleterious mutations in outcrossing populations.
Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of in...
متن کاملAnalysis of the biases in the estimation of deleterious mutation parameters from natural populations at mutation-selection balance.
Indirect estimates of the genomic rate of deleterious mutations (lambda), their average homozygous effect (s) and their degree of dominance (h) can be obtained from genetic parameters of natural populations, assuming that the frequencies of the loci controlling a given fitness trait are at mutation-selection equilibrium. In 1996, H.-W. Deng and M. Lynch developed a general methodology for obtai...
متن کاملThe effect of overdominance on characterizing deleterious mutations in large natural populations.
Alternatives to the mutation-accumulation approach have been developed to characterize deleterious genomic mutations. However, they all depend on the assumption that the standing genetic variation in natural populations is solely due to mutation-selection (M-S) balance and therefore that overdominance does not contribute to heterosis. Despite tremendous efforts, the extent to which this assumpt...
متن کاملEstimation of deleterious-mutation parameters in natural populations.
The rate and average effects of spontaneous deleterious mutations are important determinants of the evolution of breeding systems and of the vulnerability of small populations to extinction. Nevertheless, few attempts have been made to estimate the properties of such mutations, and those studies that have been performed have been extremely labor intensive, relying on long-term, laboratory mutat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 162 3 شماره
صفحات -
تاریخ انتشار 2002