Macro-Star Networks: Efficient Low-Degree Alternatives to Star Graphs
نویسندگان
چکیده
We propose a new class of interconnection networks, called macro-star networks, which belong to the class of Cayley graphs and use the star graph as a basic building module. A macro-star network can have node degree that is considerably smaller than that of a star graph of the same size, and diameter that is sub-logarithmic and asymptotically within a factor of 1.25 from a universal lower bound (given its node degree). We show that algorithms developed for star graphs can be emulated on suitably constructed macro-stars with asymptotically optimal slowdown. This enables us to obtain through emulation a variety of efficient algorithms for the macro-star network, thus proving its versatility. Basic communication tasks, such as the multinode broadcast and the total exchange, can be executed in macro-star networks in asymptotically optimal time under both the single-port and the all-port communication models. Moreover, no interconnection network with similar node degree can perform these communication tasks in time that is better by more than a constant factor than that required in a macro-star network. We show that MS networks can embed trees, meshes, hypercubes, as well as star, bubble-sort, and complete transposition graphs with constant dilation. We introduce several variants of the macro-star network that provide more flexibility in scaling up the number of nodes. We also discuss implementation issues and compare the new topology with the star graph and other popular topologies.
منابع مشابه
Embedding Algorithms for Bubble-Sort, Macro-star, and Transposition Graphs
Bubble-sort, macro-star, and transposition graphs are interconnection networks with the advantages of star graphs in terms of improving the network cost of a hypercube. These graphs contain a star graph as their sub-graph, and have node symmetry, maximum fault tolerance, and recursive partition properties. This study proposes embedding methods for these graphs based on graph definitions, and sh...
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملEmbedding Complete Binary Trees into Star Networks
Abs t rac t . Star networks have been proposed as a possible interconnection network for massively parallel computers. In this paper we investigate embeddings of complete binary trees into star networks. Let G and H be two networks represented by simple undirected graphs. An embedding of G into H is an injective mapping f from the vertices of G into the vertices of H. The dilation of the embedd...
متن کاملEfficient Load Balancing Algorithm for the Arrangement-Star Network
The Arrangement-Star is a well-known network in the literature and it is one of the promising interconnection networks in the area of super computing, it is expected to be one of the attractive alternatives in the future for High Speed Parallel Computers. The Arrangement-Star network has many attractive topological properties such as small diameter, low degree, good connectivity, low broadcasti...
متن کاملThe spectrum of the hyper-star graphs and their line graphs
Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Parallel Distrib. Syst.
دوره 9 شماره
صفحات -
تاریخ انتشار 1998