Adeno-associated virus proteins: origin of the capsid components.
نویسندگان
چکیده
The three primary capsid proteins (A, B, and C) of adeno-associated viruses have been shown previously to contain overlapping amino acid sequences (R. McPherson and J. Rose, J. Virol. 46:523-529, 1983). In the present study we demonstrate definitively that these proteins are encoded in the right half of the adeno-associated virus 2 genome, and one or both of the smallest adeno-associated RNA species (2.3- or 2.6-kilobase RNA) account for their synthesis. Protein A (90 kilodaltons) apparently initiates from a site within the intervening sequence, which is intact in the larger (unspliced) 2.6-kilobase mRNA, and may read through one or more termination codons, including a strong stop signal (UAA) that lies 31 bases downstream from the end of the intervening sequence. Proteins B (72 kilodaltons) and C (60 kilodaltons) are not derived from protein A but apparently originate from independent, in-frame initiations that lie downstream from the splice junction. It thus seems likely that production of the three adeno-associated virus capsid proteins involves at least two mRNA species. The B and C proteins presumably arise from the spliced 2.3-kilobase RNA, whereas protein A should be generated by the 2.6-kilobase RNA or a hitherto unidentified spliced RNA species.
منابع مشابه
Generation of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملA viral assembly factor promotes AAV2 capsid formation in the nucleolus.
The volume available in icosahedral virus capsids limits the size of viral genomes. To overcome this limitation, viruses have evolved strategies to increase their coding capacity by using more than one ORF while keeping the genome length constant. The assembly of virus capsids requires the coordinated interaction of a large number of subunits to generate a highly ordered structure in which the ...
متن کاملNuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation.
Adeno-associated virus capsids are composed of three proteins, VP1, VP2, and VP3. Although VP1 is necessary for viral infection, it is not essential for capsid formation. The other capsid proteins, VP2 and VP3, are sufficient for capsid formation, but the functional roles of each protein are still not well understood. By analyzing a series of deletion mutants of VP2, we identified a region nece...
متن کاملE4Orf6-E1B-55k-dependent degradation of de novo-generated adeno-associated virus type 5 Rep52 and capsid proteins employs a cullin 5-containing E3 ligase complex.
Degradation of de novo-generated adeno-associated virus type 5 (AAV5) Rep52 and capsid proteins is part of the limited target specificity displayed by adenovirus type 5 E4Orf6-E1B-55k as part of a cullin 5-containing E3 ligase complex. Both Rep and capsid proteins can be found in the ligase complex, and their presence is dependent on interaction between E4Orf6 and elongins B and C. Degradation ...
متن کاملCharacterization of the capsid protein glycosylation of adeno-associated virus type 2 by high-resolution mass spectrometry.
Adeno-associated virus type 2 (AAV-2) capsid proteins have eight sequence motifs that are potential sites for O- or N-linked glycosylation. Three are in prominent surface locations, close to the sites of cellular receptor attachment and to neutralizing epitopes on or near protrusions surrounding the three-fold axes, raising the possibility that AAV-2 might use glycosylation as a means of immune...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 52 2 شماره
صفحات -
تاریخ انتشار 1984