Anova for Diffusions and Ito Processes
نویسندگان
چکیده
Ito processes are the most common form of continuous semimartingales, and include diffusion processes. The paper is concerned with the nonparametric regression relationship between two such Ito processes. We are interested in the quadratic variation (integrated volatility) of the residual in this regression, over a unit of time (such as a day). A main conceptual finding is that this quadratic variation can be estimated almost as if the residual process were observed, the difference being that there is also a bias which is of the same asymptotic order as the mixed normal error term.
منابع مشابه
A Useful Family of Stochastic Processes for Modeling Shape Diffusions
One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملar X iv : m at h / 05 09 01 6 v 1 [ m at h . PR ] 1 S ep 2 00 5 CALCULATION OF GREEKS FOR JUMP - DIFFUSIONS
Abstract. Calculation of Greeks by Malliavin weights has proved to be a numerically satisfactory procedure for usual Ito-diffusions. In this article we prove existence of Malliavin weights for jump diffusions under Hörmander conditions and hypotheses on the invertibility of the linkage operators. The main result – in the hypo-ellitpic case – is the invertibility of the covariance matrix, which ...
متن کاملThe Pearson diffusions: A class of statistically tractable diffusion processes
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating functions are found, and the corresponding estimators are shown to be consistent and asymptotically normal. The discussion covers GMM, quasi-l...
متن کاملStochastic Processes and Control for Jump-Diffusions∗
An applied compact introductory survey of Markov stochastic processes and control in continuous time is presented. The presentation is in tutorial stages, beginning with deterministic dynamical systems for contrast and continuing on to perturbing the deterministic model with diffusions using Wiener processes. Then jump perturbations are added using simple Poisson processes constructing the theo...
متن کامل