The natural metric in the Horrocks - Mumford bundle is not Hermitian - Einstein

نویسندگان

  • Koert
  • M. Lübke
چکیده

The Horrocks-Mumford bundle E is a famous stable complex vector bundle of rank 2 on 4-dimensional complex projective space. By construction, E has a natural Hermitian metric h1. On the other hand, stability implies the existence of a Hermitian-Einstein metric in E which is unique up to a positive scalar. Now the obvious question is if h1 is in fact the Hermitian-Einstein metric. In this note we indicate how to show by computation that this is not the case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

On the Weil-petersson Volume and the First Chern Class of the Moduli Space of Calabi-yau Manifolds

In this paper, we continue our study of the Weil-Petersson geometry as in the previous paper [10], in which we have proved the boundedness of the Weil-Petersson volume, among the other results. The main results of this paper are that the volume and the integrations of Ricci curvature of the Weil-Petersson metric on the moduli space are rational numbers. In particular, the Ricci curvature define...

متن کامل

O ct 2 00 5 ON THE WEIL - PETERSSON VOLUME AND THE FIRST CHERN CLASS OF THE MODULI SPACE OF CALABI - YAU MANIFOLDS

In this paper, we continue our study of the Weil-Petersson geometry as in the previous paper [10], in which we have proved the boundedness of the Weil-Petersson volume, among the other results. The main results of this paper are that the volume and the integrations of Ricci curvature of the Weil-Petersson metric on the moduli space are rational numbers. In particular, the Ricci curvature define...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Hermitian–Einstein connections on principal bundles over flat affine manifolds

Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G–bundle EG over M admits a Hermitian–Einstein structure if and only if EG is po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000