A Weighted Generalized Least–squares Support Vector Machine

نویسندگان

  • József VALYON
  • Gábor HORVÁTH
چکیده

Among Neural Network methods, the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they automatically derive the “optimal” network structure, in respect to generalization error for a given problem. In practice it means, that a lot of decisions that had to be made during the design of a traditional NN (e.g. the number of neurons, the length and type of the learning cycle etc.) are eliminated, but the price to pay is SVM high computational complexity. The Least–Squares Support Vector Machine (LS–SVM) is especially important, because it is computationally more effective than the standard SVM methods. In the LS–SVM case training means solving a set of linear equations instead of the long and computationally hard quadratic programming problem that standard SVM involves [1]. While the least–squares version incorporates all training data in the network to produce the result, the traditional SVM selects some of them (the support vectors) that are important in the regression. This sparseness of traditional SVM can also be reached with LS-SVM by applying a pruning method [2], but this requires the entire large problem to be solved at least once. The LS–SVM method should also be able to handle outliers, resulting, e.g. from non–Gaussian noise, therefore another modification of the method, called weighted LS–SVM, is introduced to reduce the effects of this type of noise. The proposed Generalized LS–SVM [5] modifies the formulation of the LS–SVM, which can provide a pruned result. This approach is extended with weighting, which enables us to accomplish both goals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Least-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture

This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...

متن کامل

Determination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression

A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...

متن کامل

Robust Cross-Validation Score Functions with Application to Weighted Least Squares Support Vector Machine Function Estimation

In this paper new robust methods for tuning regularization parameters or other tuning parameters of a learning process for non-linear function estimation are proposed: repeated robust cross-validation score functions (repeated-CV Robust V −fold) and a robust generalized cross-validation score function (GCVRobust). Both methods are effective for dealing with outliers and non-Gaussian noise distr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003