Combustor Design and Modification Integrates Computational Fluid Dynamics
نویسنده
چکیده
Vertical Velocity Distribution. The baseline condition illustrates the flow pattern expressing the vertical velocity components over the range front-10 to 15 m/s. The baseline case with only a single elevation of overfire air produces a high velocity flow channel attached to the front wall with an associated recirculation down the rear wall of the main combustor section. The optimized case includes a revised overfire air configured to centralize the vertical flow region. The peak vertical velocities and size of the recirculation zones are reduced in the optimized case.
منابع مشابه
Prometheus: a Geometry-centric Optimization System for Combustor Design
The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization progra...
متن کاملInvestigation of stepped planning hull hydrodynamics using computational fluid dynamics and response surface method
The use of step at the bottom of the hull is one of the effective factors in reducing the resistance and increasing the stability of the Planning hull. The presence of step at the bottom of this type of hulls creates a separation in the flow, which reduces the wet surface on the hull, thus reducing the drag on the body, as well as reducing the dynamic trim. In this study, a design space was cre...
متن کاملHydrodynamic Improvement of underwater glider by Computational Fluid Dynamics method
Gliders are new marine vehicles which have research and military uses and they move by sequent diving and climbing. Suitable design of its main body and wings are important for the most advance velocity. hydrodynamic design variables are main body form, wings (cross section, dimensions, shape, longitudinal and vertical position) and hydrostatic parameters (static trim angle, amount of added for...
متن کاملCombined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...
متن کاملMULTI PHASE COMPUTATIONAL FLUID DYNAMICS MODELING OF CAVITATING FLOWS OVER AXISYMMETRIC HEAD-FORMS
In the present paper, partial cavitation over various head-forms was studied numerically to predict the shape of the cavity. Navier-Stokes equations in addition to an advection equation for vapor volume fraction were solved. Mass transfer between the phases was modeled by a sink term in vapor equation in the numerical analysis for different geometries in wide range of cavitation numbers. The r...
متن کامل