Modelling credit rating by fuzzy adaptive network
نویسندگان
چکیده
Human judgment plays an important role in the rating of enterprise financial conditions. The recently developed fuzzy adaptive network (FAN), which can handle systems whose behaviour is influenced by human judgment, appears to be ideally suited for the modelling of this credit rating problem. In this paper, FAN is used to model the credit rating of small financial enterprises. To illustrate the approach, the data of the credit rating problem is first represented by the use of fuzzy numbers. Then, the FAN network based on inference rules is constructed. And finally, the network is trained or learned by using the fuzzy number training data. The main advantages of the proposed network are the ability for linguistic representation, linguistic aggregation and the learning ability of the neural network. c © 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Fuzzy Adaptive Networks in credit rating and loan approval
Fuzzy adaptive network (FAN) is proposed to help decision makers in credit scores and to assign the amount of loan. By combining with neural networks to incorporate the learning ability, FAN provides an alternative approach for the imprecision and fuzziness of the credit rating system. A loan approval example is given and the performance of FAN is compared with the regression algorithm. The res...
متن کاملFraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملDesigning an Expert System for Credit Rating of Real Customers of Banks Using Fuzzy Neural Networks
Currently, in Iran's banking system, non-repayment of facilities has become one of the biggest issues, and due to the lack of a proper system for proper allocation of facilities, they face a number of problems, including the problem of allocation of loans, the problem of failure to repay loans Of the central bank, or the amount of facilities increased from the amount of reimbursement. The solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 45 شماره
صفحات -
تاریخ انتشار 2007