MIRAI: Multi-hierarchical, FS-Tree Based Music Information Retrieval System
نویسندگان
چکیده
With the fast booming of online music repositories, there is a need for content-based automatic indexing which will help users to find their favorite music objects in real time. Recently, numerous successful approaches on musical data feature extraction and selection have been proposed for instrument recognition in monophonic sounds. Unfortunately, none of these methods can be successfully applied to polyphonic sounds. Identification of music instruments in polyphonic sounds is still difficult and challenging, especially when harmonic partials are overlapping with each other. This has stimulated the research on music sound separation and new features development for content-based automatic music information retrieval. Our goal is to build a cooperative query answering system (QAS), for a musical database, retrieving from it all objects satisfying queries like ”find all musical pieces in pentatonic scale with a viola and piano where viola is playing for minimum 20 seconds and piano for minimum 10 seconds”. We use the database of musical sounds, containing almost 4000 sounds taken from the MUMs (McGill University Master Samples), as a vehicle to construct several classifiers for automatic instrument recognition. Classifiers showing the best performance are adopted for automatic indexing of musical pieces by instruments. Our musical database has an FS-tree (Frame Segment Tree) structure representation. The cooperativeness of QAS is driven by several hierarchical structures used for classifying musical instruments.
منابع مشابه
MIRAI: Multi-hierarchical Music Automatic Indexing and Retrieval System
Recently, numerous successful approaches have been developed for instrument recognition in monophonic sounds. Unfortunately, none of them can be successfully applied to polyphonic sounds. Identification of music instruments in polyphonic sounds is still difficult and challenging. This has stimulated a number of research projects on music sound separation and new features development for content...
متن کاملMF-tree: Extracting and Clustering the Structural Features from Music Object in MusicXML
In the music information retrieval field, the most important topic is to extract the feature which represents the content from the music objects. The content feature is useful for music analysis, music retrieval, and other services. In this paper, our data form is MusicXML. We extract the structural feature from the classical music object and it is based on music theory and music form. Accordin...
متن کاملPrototyping a Vibrato-Aware Query-By-Humming (QBH) Music Information Retrieval System for Mobile Communication Devices: Case of Chromatic Harmonica
Background and Aim: The current research aims at prototyping query-by-humming music information retrieval systems for smart phones. Methods: This multi-method research follows simulation technique from mixed models of the operations research methodology, and the documentary research method, simultaneously. Two chromatic harmonica albums comprised the research population. To achieve the purpose ...
متن کاملCascade Classifiers for Hierarchical Decision Systems
Hierarchical classifiers are usually defined as methods of classifying inputs into defined output categories. The classification occurs first on a low-level with highly specific pieces of input data. The classifications of the individual pieces of data are then combined systematically and classified on a higher level iteratively until one output is produced. This final output is the overall cla...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007