Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite
نویسندگان
چکیده
In this study, pure ZnO, CeO2 and ZnO/CeO2 nanocomposites were synthesized using a thermal decomposition method and subsequently characterized using different standard techniques. High-resolution X-ray photoelectron spectroscopy measurements confirmed the oxidation states and presence of Zn(2+), Ce(4+), Ce(3+) and different bonded oxygen species in the nanocomposites. The prepared pure ZnO and CeO2 as well as the ZnO/CeO2 nanocomposites with various proportions of ZnO and CeO2 were tested for photocatalytic degradation of methyl orange, methylene blue and phenol under visible-light irradiation. The optimized and highly efficient ZnO/CeO2 (90:10) nanocomposite exhibited enhanced photocatalytic degradation performance for the degradation of methyl orange, methylene blue, and phenol as well as industrial textile effluent compared to ZnO, CeO2 and the other investigated nanocomposites. Moreover, the recycling results demonstrate that the ZnO/CeO2 (90:10) nanocomposite exhibited good stability and long-term durability. Furthermore, the prepared ZnO/CeO2 nanocomposites were used for the electrochemical detection of uric acid and ascorbic acid. The ZnO/CeO2 (90:10) nanocomposite also demonstrated the best detection, sensitivity and performance among the investigated materials in this application. These findings suggest that the synthesized ZnO/CeO2 (90:10) nanocomposite could be effectively used in various applications.
منابع مشابه
ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.
A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation ...
متن کاملFabrication of Magnetically Recoverable Nanocomposites by Combination of Fe3O4/ZnO with AgI and Ag2CO3: Substantially Enhanced Photocatalytic Activity under Visible Light
We report highly efficient magnetically recoverable photocatalysts through combination of Fe3O4/ZnO with AgI and Ag2CO3, as narrow band gap semiconductors. The resultant photocatalysts were characterized by XRD, EDX, SEM. TEM, UV–vis DRS, FT-IR, PL, and VSM instruments. Under visible-light illumination, the nanocomposite with 1:6 weight ratio of Fe3O4 to ZnO/AgI/Ag2CO3 exhibited superior activi...
متن کاملVisible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite
The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...
متن کاملSynthesis and characterization ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites: Investigation of photocatalytic activity for the degradation of Congo Red under visible light irradiation
In the present investigation, ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites were fabricated via a facile hydrothermal method and were calcined at 300 °C for 3 h. Synthesis of ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites optimized by the different weight percentages. The synthesized photocatalyst...
متن کاملVisible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite
The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...
متن کامل