Attention Decreases Phase-Amplitude Coupling, Enhancing Stimulus Discriminability in Cortical Area MT
نویسندگان
چکیده
Local field potentials (LFPs) in cortex reflect synchronous fluctuations in the synaptic activity of local populations of neurons. The power of high frequency (>30 Hz) oscillations in LFPs is locked to the phase of low frequency (<30 Hz) oscillations, an effect known as phase-amplitude coupling (PAC). While PAC has been observed in a variety of cortical regions and animal models, its functional role particularly in primate visual cortex is largely unknown. Here, we document PAC for LFPs recorded from extra-striate area MT of macaque monkeys, an area specialized for the processing of visual motion. We further show that directing spatial attention into the receptive field of MT neurons decreases the coupling between the low frequency phase and high frequency power of LFPs. This attentional suppression of PAC increases neuronal discriminability for attended visual stimuli. Therefore, we hypothesize that visual cortex uses PAC to regulate inter-neuronal correlations and thereby enhances the coding of relevant stimuli.
منابع مشابه
Marginally subcritical dynamics explain enhanced stimulus discriminability under attention
Recent experimental and theoretical work has established the hypothesis that cortical neurons operate close to a critical state which describes a phase transition from chaotic to ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal information processing. However, although critical dynamics have been demonstrated in recordings of spontaneously active cortica...
متن کاملAttention improves transfer of motion information between V1 and MT.
Selective attention modulates activity within individual visual areas; however, the role of attention in mediating the transfer of information between areas is not well understood. Here, we used fMRI to assess attention-related changes in coupled BOLD activation in two key areas of human visual cortex that are involved in motion processing: V1 and MT. To examine attention-related changes in cro...
متن کاملNonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas
There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these me...
متن کاملAttention to the Color of a Moving Stimulus Modulates Motion-Signal Processing in Macaque Area MT: Evidence for a Unified Attentional System
Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tu...
متن کاملAttention-dependent coupling between beta activities recorded in the cat's thalamic and cortical representations of the central visual field.
We have previously proposed that enhanced 16-24 Hz (beta) local field potential activity in the primary visual cortex and lateral geniculate nucleus may be an electrophysiological correlate of the attentional mechanism that increases the gain of afferent visual information flow to the cortex. In this study, we measured coupling between beta signals recorded in the thalamic (i.e. lateral genicul...
متن کامل